{"title":"玄武岩熔体中的多组分扩散:与温度无关的特征向量矩阵和多组分扩散计算器","authors":"Bobo Bai, Youxue Zhang","doi":"10.1016/j.gca.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Multicomponent diffusion in natural silicate melts is a fundamental process in magma mixing and evolution. In <span><math><mrow><mi>N</mi></mrow></math></span>-component silicate melts, multicomponent diffusion is characterized by an <span><math><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></math></span> square matrix, termed the diffusion matrix <span><math><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></math></span>. Eigenvectors of <span><math><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></math></span> define <span><math><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></math></span> eigen-components that diffuse independently of each other. Diffusion eigenvectors in an 8-component SiO<sub>2</sub>-TiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-FeO-MgO-CaO-Na<sub>2</sub>O-K<sub>2</sub>O basalt appear to be roughly temperature independent (e.g., Guo and Zhang, 2020). For additional verification of the temperature independence and for improving the accuracy of the eigenvector matrix, we use a single eigenvector matrix, <span><math><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow></math></span>, to simultaneously fit concentration profiles from 26 diffusion couple experiments at three temperatures from Guo and Zhang, (2018, 2020), and one additional experiment conducted in this work. The goodness of fit using one single eigenvector matrix in this work is about the same as that using three different eigenvector matrices in Guo and Zhang (2018, 2020), further supporting the temperature independence of <span><math><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow></math></span> in basaltic melts. The eigenvalues (i.e., the diffusion coefficients for individual eigenvector components) follow the Arrhenius relation. Using the extracted eigenvector matrix and eigenvalues, we present an open-access calculator for the community to compute multicomponent diffusion profiles. The calculator is applied to examine multicomponent diffusion in eigen-component space, and minor compositional dependence of eigen-component diffusivities (i.e., eigenvalues) is revealed.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"407 ","pages":"Pages 133-143"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicomponent diffusion in basaltic melts: A temperature-independent eigenvector matrix, and a multicomponent diffusion calculator\",\"authors\":\"Bobo Bai, Youxue Zhang\",\"doi\":\"10.1016/j.gca.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multicomponent diffusion in natural silicate melts is a fundamental process in magma mixing and evolution. In <span><math><mrow><mi>N</mi></mrow></math></span>-component silicate melts, multicomponent diffusion is characterized by an <span><math><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></math></span> square matrix, termed the diffusion matrix <span><math><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></math></span>. Eigenvectors of <span><math><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></math></span> define <span><math><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></math></span> eigen-components that diffuse independently of each other. Diffusion eigenvectors in an 8-component SiO<sub>2</sub>-TiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-FeO-MgO-CaO-Na<sub>2</sub>O-K<sub>2</sub>O basalt appear to be roughly temperature independent (e.g., Guo and Zhang, 2020). For additional verification of the temperature independence and for improving the accuracy of the eigenvector matrix, we use a single eigenvector matrix, <span><math><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow></math></span>, to simultaneously fit concentration profiles from 26 diffusion couple experiments at three temperatures from Guo and Zhang, (2018, 2020), and one additional experiment conducted in this work. The goodness of fit using one single eigenvector matrix in this work is about the same as that using three different eigenvector matrices in Guo and Zhang (2018, 2020), further supporting the temperature independence of <span><math><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow></math></span> in basaltic melts. The eigenvalues (i.e., the diffusion coefficients for individual eigenvector components) follow the Arrhenius relation. Using the extracted eigenvector matrix and eigenvalues, we present an open-access calculator for the community to compute multicomponent diffusion profiles. The calculator is applied to examine multicomponent diffusion in eigen-component space, and minor compositional dependence of eigen-component diffusivities (i.e., eigenvalues) is revealed.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"407 \",\"pages\":\"Pages 133-143\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703725004703\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725004703","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Multicomponent diffusion in basaltic melts: A temperature-independent eigenvector matrix, and a multicomponent diffusion calculator
Multicomponent diffusion in natural silicate melts is a fundamental process in magma mixing and evolution. In -component silicate melts, multicomponent diffusion is characterized by an square matrix, termed the diffusion matrix . Eigenvectors of define eigen-components that diffuse independently of each other. Diffusion eigenvectors in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O basalt appear to be roughly temperature independent (e.g., Guo and Zhang, 2020). For additional verification of the temperature independence and for improving the accuracy of the eigenvector matrix, we use a single eigenvector matrix, , to simultaneously fit concentration profiles from 26 diffusion couple experiments at three temperatures from Guo and Zhang, (2018, 2020), and one additional experiment conducted in this work. The goodness of fit using one single eigenvector matrix in this work is about the same as that using three different eigenvector matrices in Guo and Zhang (2018, 2020), further supporting the temperature independence of in basaltic melts. The eigenvalues (i.e., the diffusion coefficients for individual eigenvector components) follow the Arrhenius relation. Using the extracted eigenvector matrix and eigenvalues, we present an open-access calculator for the community to compute multicomponent diffusion profiles. The calculator is applied to examine multicomponent diffusion in eigen-component space, and minor compositional dependence of eigen-component diffusivities (i.e., eigenvalues) is revealed.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.