基于KAADPN综合概率分布引导启发式算法的反应堆换料优化研究

IF 2.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Yanpeng Sun, Xubo Ma
{"title":"基于KAADPN综合概率分布引导启发式算法的反应堆换料优化研究","authors":"Yanpeng Sun,&nbsp;Xubo Ma","doi":"10.1016/j.anucene.2025.111862","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the refueling optimization problem for reactors, selecting the effective multiplication factor as the metric for evaluating loading schemes. The Characteristic Statistical Simulated Annealing and Characteristic Statistical Genetic Algorithm are proposed, which significantly enhance the exploration of the solution space and improve the global search capability. The Kolmogorov-Arnold Attention Dual-Path Network (KAADPN) is introduced, combining the function modeling ability of KAN with the global feature capture of the self-attention mechanism. This significantly improves the model’s prediction accuracy while enhancing its computational efficiency. By establishing a surrogate model for core physics calculations and integrating it with optimization algorithms, pseudo-equilibrium optimization analysis is conducted. The effectiveness of the algorithms is compared through single-cycle optimization case studies, and preliminary no-shuffling optimization verification is performed, resulting in ideal core fuel loading schemes. This validates the feasibility of the method and provides a new tool for efficiently addressing the refueling optimization problem.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"226 ","pages":"Article 111862"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on reactor refueling optimization using KAADPN integrated probability distribution guided heuristic algorithm\",\"authors\":\"Yanpeng Sun,&nbsp;Xubo Ma\",\"doi\":\"10.1016/j.anucene.2025.111862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the refueling optimization problem for reactors, selecting the effective multiplication factor as the metric for evaluating loading schemes. The Characteristic Statistical Simulated Annealing and Characteristic Statistical Genetic Algorithm are proposed, which significantly enhance the exploration of the solution space and improve the global search capability. The Kolmogorov-Arnold Attention Dual-Path Network (KAADPN) is introduced, combining the function modeling ability of KAN with the global feature capture of the self-attention mechanism. This significantly improves the model’s prediction accuracy while enhancing its computational efficiency. By establishing a surrogate model for core physics calculations and integrating it with optimization algorithms, pseudo-equilibrium optimization analysis is conducted. The effectiveness of the algorithms is compared through single-cycle optimization case studies, and preliminary no-shuffling optimization verification is performed, resulting in ideal core fuel loading schemes. This validates the feasibility of the method and provides a new tool for efficiently addressing the refueling optimization problem.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":\"226 \",\"pages\":\"Article 111862\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454925006796\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454925006796","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了反应堆的换料优化问题,选择有效乘数作为评价加载方案的度量。提出了特征统计模拟退火算法和特征统计遗传算法,显著增强了对解空间的探索能力,提高了全局搜索能力。将KAN的函数建模能力与自注意机制的全局特征捕获相结合,提出了Kolmogorov-Arnold注意双路径网络(KAADPN)。这大大提高了模型的预测精度,同时提高了模型的计算效率。通过建立岩心物理计算代理模型,并将其与优化算法相结合,进行拟平衡优化分析。通过单周期优化算例比较了算法的有效性,并进行了初步的无洗牌优化验证,得到了理想的堆芯燃料加载方案。验证了该方法的可行性,为有效解决加油优化问题提供了新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on reactor refueling optimization using KAADPN integrated probability distribution guided heuristic algorithm
This study addresses the refueling optimization problem for reactors, selecting the effective multiplication factor as the metric for evaluating loading schemes. The Characteristic Statistical Simulated Annealing and Characteristic Statistical Genetic Algorithm are proposed, which significantly enhance the exploration of the solution space and improve the global search capability. The Kolmogorov-Arnold Attention Dual-Path Network (KAADPN) is introduced, combining the function modeling ability of KAN with the global feature capture of the self-attention mechanism. This significantly improves the model’s prediction accuracy while enhancing its computational efficiency. By establishing a surrogate model for core physics calculations and integrating it with optimization algorithms, pseudo-equilibrium optimization analysis is conducted. The effectiveness of the algorithms is compared through single-cycle optimization case studies, and preliminary no-shuffling optimization verification is performed, resulting in ideal core fuel loading schemes. This validates the feasibility of the method and provides a new tool for efficiently addressing the refueling optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信