磁Schrödinger方程的高斯变分逼近的时间积分

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Malik Scheifinger , Kurt Busch , Marlis Hochbruck , Caroline Lasser
{"title":"磁Schrödinger方程的高斯变分逼近的时间积分","authors":"Malik Scheifinger ,&nbsp;Kurt Busch ,&nbsp;Marlis Hochbruck ,&nbsp;Caroline Lasser","doi":"10.1016/j.jcp.2025.114349","DOIUrl":null,"url":null,"abstract":"<div><div>In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114349"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-integration of Gaussian variational approximation for the magnetic Schrödinger equation\",\"authors\":\"Malik Scheifinger ,&nbsp;Kurt Busch ,&nbsp;Marlis Hochbruck ,&nbsp;Caroline Lasser\",\"doi\":\"10.1016/j.jcp.2025.114349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"541 \",\"pages\":\"Article 114349\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002199912500631X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500631X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑半经典磁Schrödinger方程,它描述了带电粒子在电磁场影响下的动力学。随时间变化的Schrödinger方程的解通过随时间变化的Dirac-Frenkel变分原理近似于单个高斯波包。对于近似,我们使用常微分运动方程作为变分解的参数,并将经典力学的二阶Boris算法推广到量子力学的情况。此外,我们提出了经典四阶龙格-库塔方法的改进版本。数值实验探索参数收敛性和几何性质。此外,我们还对Penning陷阱的解析解进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-integration of Gaussian variational approximation for the magnetic Schrödinger equation
In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信