二维金属-六羟基苯框架作为CO气体传感器的第一性原理预测

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Shulei Wang , Qian Wang , Li Lv , Yinfang Xu , Yuanyuan Sun , Changmin Shi , Xiaolong Li , Jianwei Zhao , Hongmei Liu
{"title":"二维金属-六羟基苯框架作为CO气体传感器的第一性原理预测","authors":"Shulei Wang ,&nbsp;Qian Wang ,&nbsp;Li Lv ,&nbsp;Yinfang Xu ,&nbsp;Yuanyuan Sun ,&nbsp;Changmin Shi ,&nbsp;Xiaolong Li ,&nbsp;Jianwei Zhao ,&nbsp;Hongmei Liu","doi":"10.1016/j.comptc.2025.115480","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) metal-organic frameworks (MOFs) have been adopted in gas sensing due to their large surface area and abundant active sites. In this study, we performed density functional theory calculations to systematically investigate the gas sensing properties of 2D metal-hexahydroxybenzene frameworks (M<sub>3</sub>(HHB)<sub>2</sub>, where M represents V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). Our results reveal that the eight M<sub>3</sub>(HHB)<sub>2</sub> monolayers exhibit distinct responses to CO molecules. Specifically, the adsorption of CO on one surface of the films significantly increases the conductance of V<sub>3</sub>(HHB)<sub>2</sub>, Fe<sub>3</sub>(HHB)<sub>2</sub>, and Co<sub>3</sub>(HHB)<sub>2</sub>, with a conductance response exceeding 68 %. This is attributed to the reduction of the band gap in V<sub>3</sub>(HHB)<sub>2</sub> and the transition of Fe<sub>3</sub>(HHB)<sub>2</sub> and Co<sub>3</sub>(HHB)<sub>2</sub> from half-metallic to metallic properties upon CO adsorption. In contrast, CO adsorption leads to a noticeable reduction in the conductance of Cr<sub>3</sub>(HHB)<sub>2</sub>, Mn<sub>3</sub>(HHB)<sub>2</sub>, Ni<sub>3</sub>(HHB)<sub>2</sub>, and Zn<sub>3</sub>(HHB)<sub>2</sub> with a conductance response of more than −88 %. Cr<sub>3</sub>(HHB)<sub>2</sub> and Ni<sub>3</sub>(HHB)<sub>2</sub> monolayers change from metallic to half-metallic properties, while Mn<sub>3</sub>(HHB)<sub>2</sub> and Zn<sub>3</sub>(HHB)<sub>2</sub> transition from half-metallic to semiconducting properties upon CO adsorption. The current-voltage curves further confirm the high sensitivity of M<sub>3</sub>(HHB)<sub>2</sub> to CO gas. Additionally, the desorption time of CO on Mn<sub>3</sub>(HHB)<sub>2</sub>, Ni<sub>3</sub>(HHB)<sub>2</sub>, and Zn<sub>3</sub>(HHB)<sub>2</sub> is less than 1 × 10<sup>−5</sup> s at room temperature, indicating their potential as reusable CO sensors. Our findings suggest that M<sub>3</sub>(HHB)<sub>2</sub> films exhibit higher sensitivity when one surface of the nanosheet is exposed to CO gas, making them promising candidates for resistive CO gas sensors.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1254 ","pages":"Article 115480"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles prediction of two-dimensional metal-hexahydroxybenzene frameworks as promising CO gas sensors\",\"authors\":\"Shulei Wang ,&nbsp;Qian Wang ,&nbsp;Li Lv ,&nbsp;Yinfang Xu ,&nbsp;Yuanyuan Sun ,&nbsp;Changmin Shi ,&nbsp;Xiaolong Li ,&nbsp;Jianwei Zhao ,&nbsp;Hongmei Liu\",\"doi\":\"10.1016/j.comptc.2025.115480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional (2D) metal-organic frameworks (MOFs) have been adopted in gas sensing due to their large surface area and abundant active sites. In this study, we performed density functional theory calculations to systematically investigate the gas sensing properties of 2D metal-hexahydroxybenzene frameworks (M<sub>3</sub>(HHB)<sub>2</sub>, where M represents V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). Our results reveal that the eight M<sub>3</sub>(HHB)<sub>2</sub> monolayers exhibit distinct responses to CO molecules. Specifically, the adsorption of CO on one surface of the films significantly increases the conductance of V<sub>3</sub>(HHB)<sub>2</sub>, Fe<sub>3</sub>(HHB)<sub>2</sub>, and Co<sub>3</sub>(HHB)<sub>2</sub>, with a conductance response exceeding 68 %. This is attributed to the reduction of the band gap in V<sub>3</sub>(HHB)<sub>2</sub> and the transition of Fe<sub>3</sub>(HHB)<sub>2</sub> and Co<sub>3</sub>(HHB)<sub>2</sub> from half-metallic to metallic properties upon CO adsorption. In contrast, CO adsorption leads to a noticeable reduction in the conductance of Cr<sub>3</sub>(HHB)<sub>2</sub>, Mn<sub>3</sub>(HHB)<sub>2</sub>, Ni<sub>3</sub>(HHB)<sub>2</sub>, and Zn<sub>3</sub>(HHB)<sub>2</sub> with a conductance response of more than −88 %. Cr<sub>3</sub>(HHB)<sub>2</sub> and Ni<sub>3</sub>(HHB)<sub>2</sub> monolayers change from metallic to half-metallic properties, while Mn<sub>3</sub>(HHB)<sub>2</sub> and Zn<sub>3</sub>(HHB)<sub>2</sub> transition from half-metallic to semiconducting properties upon CO adsorption. The current-voltage curves further confirm the high sensitivity of M<sub>3</sub>(HHB)<sub>2</sub> to CO gas. Additionally, the desorption time of CO on Mn<sub>3</sub>(HHB)<sub>2</sub>, Ni<sub>3</sub>(HHB)<sub>2</sub>, and Zn<sub>3</sub>(HHB)<sub>2</sub> is less than 1 × 10<sup>−5</sup> s at room temperature, indicating their potential as reusable CO sensors. Our findings suggest that M<sub>3</sub>(HHB)<sub>2</sub> films exhibit higher sensitivity when one surface of the nanosheet is exposed to CO gas, making them promising candidates for resistive CO gas sensors.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1254 \",\"pages\":\"Article 115480\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X25004165\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25004165","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二维金属有机骨架(mof)由于其具有较大的表面积和丰富的活性位点而被广泛应用于气体传感领域。在这项研究中,我们进行了密度泛函理论计算,系统地研究了二维金属-六羟基苯框架(M3(hbb)2,其中M代表V, Cr, Mn, Fe, Co, Ni, Cu和Zn)的气敏特性。我们的研究结果表明,8个M3(hbb)2单层膜对CO分子表现出不同的响应。具体而言,CO在膜表面的吸附显著提高了V3(hbb)2、Fe3(hbb)2和Co3(hbb)2的电导响应,电导响应超过68%。这是由于V3(hbb)2的带隙减小以及CO吸附后Fe3(hbb)2和Co3(hbb)2从半金属性质转变为金属性质所致。相比之下,CO吸附导致Cr3(hbb)2、Mn3(hbb)2、Ni3(hbb)2和Zn3(hbb)2的电导响应明显降低,电导响应大于−88%。Cr3(hbb)2和Ni3(hbb)2单层膜在CO吸附作用下由半金属性质转变为半金属性质,而Mn3(hbb)2和Zn3(hbb)2单层膜则由半金属性质转变为半导体性质。电流-电压曲线进一步证实了M3(hbb)2对CO气体的高灵敏度。此外,在室温下,CO在Mn3(hbb)2、Ni3(hbb)2和Zn3(hbb)2上的解吸时间小于1 × 10−5 s,表明它们具有可重复使用的CO传感器的潜力。我们的研究结果表明,当纳米片的一个表面暴露于CO气体中时,M3(hbb)2薄膜表现出更高的灵敏度,使其成为电阻式CO气体传感器的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-principles prediction of two-dimensional metal-hexahydroxybenzene frameworks as promising CO gas sensors

First-principles prediction of two-dimensional metal-hexahydroxybenzene frameworks as promising CO gas sensors
Two-dimensional (2D) metal-organic frameworks (MOFs) have been adopted in gas sensing due to their large surface area and abundant active sites. In this study, we performed density functional theory calculations to systematically investigate the gas sensing properties of 2D metal-hexahydroxybenzene frameworks (M3(HHB)2, where M represents V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). Our results reveal that the eight M3(HHB)2 monolayers exhibit distinct responses to CO molecules. Specifically, the adsorption of CO on one surface of the films significantly increases the conductance of V3(HHB)2, Fe3(HHB)2, and Co3(HHB)2, with a conductance response exceeding 68 %. This is attributed to the reduction of the band gap in V3(HHB)2 and the transition of Fe3(HHB)2 and Co3(HHB)2 from half-metallic to metallic properties upon CO adsorption. In contrast, CO adsorption leads to a noticeable reduction in the conductance of Cr3(HHB)2, Mn3(HHB)2, Ni3(HHB)2, and Zn3(HHB)2 with a conductance response of more than −88 %. Cr3(HHB)2 and Ni3(HHB)2 monolayers change from metallic to half-metallic properties, while Mn3(HHB)2 and Zn3(HHB)2 transition from half-metallic to semiconducting properties upon CO adsorption. The current-voltage curves further confirm the high sensitivity of M3(HHB)2 to CO gas. Additionally, the desorption time of CO on Mn3(HHB)2, Ni3(HHB)2, and Zn3(HHB)2 is less than 1 × 10−5 s at room temperature, indicating their potential as reusable CO sensors. Our findings suggest that M3(HHB)2 films exhibit higher sensitivity when one surface of the nanosheet is exposed to CO gas, making them promising candidates for resistive CO gas sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信