高强度铝合金w回火高伸率低成形性的机理

IF 7.5 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
J.W. Yu , X.G. Fan , L. Wang , Z.J. Wang , M. Zhan
{"title":"高强度铝合金w回火高伸率低成形性的机理","authors":"J.W. Yu ,&nbsp;X.G. Fan ,&nbsp;L. Wang ,&nbsp;Z.J. Wang ,&nbsp;M. Zhan","doi":"10.1016/j.jmatprotec.2025.119068","DOIUrl":null,"url":null,"abstract":"<div><div>The paradoxical combination of high uniaxial elongation but poor multiaxial formability in W-temper 2219 aluminum alloys presents a long-standing challenge for aerospace forming applications. This study delivers a fundamental advancement by elucidating the underlying stress-state-dependent fracture mechanisms that govern this behavior. Using a hybrid experimental–numerical approach spanning a wide range of stress states, we reveal that the apparent ductility observed in uniaxial tension does not translate to global formability due to the complex interplay between dynamic strain aging (PLC effect), conjugate shear band formation, and the separation of the stress-strain maximum shear planes under large plastic strains. Crucially, we demonstrate that these phenomena induce stress-state-sensitive localization modes that accelerate damage evolution under certain loading paths while retarding it under others. This mechanistic insight bridges a key knowledge gap between microstructural instability and macroscopic formability in solution-treated aluminum alloys. The findings not only explain the failure inconsistency observed across different forming processes but also offer a physics-based foundation for designing better forming strategies and improving the processability of dynamic strain aging-prone aluminum alloys.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"345 ","pages":"Article 119068"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of the high elongation but low formability of high-strength aluminum alloy in W-temper\",\"authors\":\"J.W. Yu ,&nbsp;X.G. Fan ,&nbsp;L. Wang ,&nbsp;Z.J. Wang ,&nbsp;M. Zhan\",\"doi\":\"10.1016/j.jmatprotec.2025.119068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paradoxical combination of high uniaxial elongation but poor multiaxial formability in W-temper 2219 aluminum alloys presents a long-standing challenge for aerospace forming applications. This study delivers a fundamental advancement by elucidating the underlying stress-state-dependent fracture mechanisms that govern this behavior. Using a hybrid experimental–numerical approach spanning a wide range of stress states, we reveal that the apparent ductility observed in uniaxial tension does not translate to global formability due to the complex interplay between dynamic strain aging (PLC effect), conjugate shear band formation, and the separation of the stress-strain maximum shear planes under large plastic strains. Crucially, we demonstrate that these phenomena induce stress-state-sensitive localization modes that accelerate damage evolution under certain loading paths while retarding it under others. This mechanistic insight bridges a key knowledge gap between microstructural instability and macroscopic formability in solution-treated aluminum alloys. The findings not only explain the failure inconsistency observed across different forming processes but also offer a physics-based foundation for designing better forming strategies and improving the processability of dynamic strain aging-prone aluminum alloys.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"345 \",\"pages\":\"Article 119068\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013625003589\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625003589","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

w回火2219铝合金单轴伸长率高但多轴成形性差的矛盾组合是航空航天成形应用的一个长期挑战。这项研究通过阐明控制这种行为的潜在应力状态相关断裂机制,提供了根本性的进展。通过跨大范围应力状态的混合实验-数值方法,我们发现由于动态应变老化(PLC效应)、共轭剪切带形成和大塑性应变下应力-应变最大剪切面分离之间的复杂相互作用,单轴拉伸下观察到的表观延性不能转化为整体成形性。至关重要的是,我们证明了这些现象诱导应力状态敏感的局部化模式,在某些加载路径下加速损伤演化,而在其他加载路径下延缓损伤演化。这种机制的洞察力弥合了微观结构不稳定性和宏观成形性在固溶处理铝合金之间的关键知识差距。研究结果不仅解释了不同成形过程中观察到的失效不一致性,而且为设计更好的成形策略和提高动态应变时效铝合金的可加工性提供了物理基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of the high elongation but low formability of high-strength aluminum alloy in W-temper
The paradoxical combination of high uniaxial elongation but poor multiaxial formability in W-temper 2219 aluminum alloys presents a long-standing challenge for aerospace forming applications. This study delivers a fundamental advancement by elucidating the underlying stress-state-dependent fracture mechanisms that govern this behavior. Using a hybrid experimental–numerical approach spanning a wide range of stress states, we reveal that the apparent ductility observed in uniaxial tension does not translate to global formability due to the complex interplay between dynamic strain aging (PLC effect), conjugate shear band formation, and the separation of the stress-strain maximum shear planes under large plastic strains. Crucially, we demonstrate that these phenomena induce stress-state-sensitive localization modes that accelerate damage evolution under certain loading paths while retarding it under others. This mechanistic insight bridges a key knowledge gap between microstructural instability and macroscopic formability in solution-treated aluminum alloys. The findings not only explain the failure inconsistency observed across different forming processes but also offer a physics-based foundation for designing better forming strategies and improving the processability of dynamic strain aging-prone aluminum alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信