结合神经网络控制与模型预测控制:在大规模非线性过程中的应用

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Arthur Khodaverdian , Dhruv Gohil , Panagiotis D. Christofides
{"title":"结合神经网络控制与模型预测控制:在大规模非线性过程中的应用","authors":"Arthur Khodaverdian ,&nbsp;Dhruv Gohil ,&nbsp;Panagiotis D. Christofides","doi":"10.1016/j.compchemeng.2025.109396","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a method to overcome the issue of nonlinear model predictive control (MPC) requiring practically infeasible computation times for large-scale systems. In particular, the use of Neural Networks (NN) to approximate nonlinear MPC calculated control actions in a real-time closed-loop implementation with externally enforced stability guarantees is explored. Using Lyapunov-based stability constraints, the reduced computational complexity of NNs paired with the ability to train using MPC that would be infeasible to apply in real-time systems (due to the use of a large prediction horizon to ensure good closed-loop performance) enables the training of an NN-based approximate control policy that directly substitutes MPC. With a stabilizing fallback controller available, this NN controller enables real-time stabilizing control of high-dimensional nonlinear systems. To demonstrate this, Aspen Plus Dynamics, a dynamic chemical process simulation software, is used to create a large-scale nonlinear chemical process example. Using an NN trained off of an offline MPC using a first-principles model and a large prediction horizon, a comprehensive study of the resulting closed-loop behavior is carried out to evaluate the closed-loop stability, performance, and robustness properties of the approach.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109396"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniting neural network-based control and model predictive control: Application to a large-scale nonlinear process\",\"authors\":\"Arthur Khodaverdian ,&nbsp;Dhruv Gohil ,&nbsp;Panagiotis D. Christofides\",\"doi\":\"10.1016/j.compchemeng.2025.109396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes a method to overcome the issue of nonlinear model predictive control (MPC) requiring practically infeasible computation times for large-scale systems. In particular, the use of Neural Networks (NN) to approximate nonlinear MPC calculated control actions in a real-time closed-loop implementation with externally enforced stability guarantees is explored. Using Lyapunov-based stability constraints, the reduced computational complexity of NNs paired with the ability to train using MPC that would be infeasible to apply in real-time systems (due to the use of a large prediction horizon to ensure good closed-loop performance) enables the training of an NN-based approximate control policy that directly substitutes MPC. With a stabilizing fallback controller available, this NN controller enables real-time stabilizing control of high-dimensional nonlinear systems. To demonstrate this, Aspen Plus Dynamics, a dynamic chemical process simulation software, is used to create a large-scale nonlinear chemical process example. Using an NN trained off of an offline MPC using a first-principles model and a large prediction horizon, a comprehensive study of the resulting closed-loop behavior is carried out to evaluate the closed-loop stability, performance, and robustness properties of the approach.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109396\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425003990\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003990","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种方法来克服非线性模型预测控制(MPC)的问题,该问题要求大规模系统的计算时间实际上是不可行的。特别是,在具有外部强制稳定性保证的实时闭环实现中,探索了使用神经网络(NN)来近似非线性MPC计算控制动作。使用基于lyapunov的稳定性约束,降低了nn的计算复杂性,加上使用MPC进行训练的能力,这在实时系统中是不可行的(由于使用大的预测范围来确保良好的闭环性能),从而可以训练基于nn的近似控制策略,直接替代MPC。利用稳定回退控制器,该神经网络控制器可以实现高维非线性系统的实时稳定控制。为了证明这一点,利用动态化工过程仿真软件Aspen Plus Dynamics创建了一个大规模的非线性化工过程实例。使用使用第一性原理模型和大预测范围的离线MPC训练的神经网络,对产生的闭环行为进行全面研究,以评估该方法的闭环稳定性、性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniting neural network-based control and model predictive control: Application to a large-scale nonlinear process
This work proposes a method to overcome the issue of nonlinear model predictive control (MPC) requiring practically infeasible computation times for large-scale systems. In particular, the use of Neural Networks (NN) to approximate nonlinear MPC calculated control actions in a real-time closed-loop implementation with externally enforced stability guarantees is explored. Using Lyapunov-based stability constraints, the reduced computational complexity of NNs paired with the ability to train using MPC that would be infeasible to apply in real-time systems (due to the use of a large prediction horizon to ensure good closed-loop performance) enables the training of an NN-based approximate control policy that directly substitutes MPC. With a stabilizing fallback controller available, this NN controller enables real-time stabilizing control of high-dimensional nonlinear systems. To demonstrate this, Aspen Plus Dynamics, a dynamic chemical process simulation software, is used to create a large-scale nonlinear chemical process example. Using an NN trained off of an offline MPC using a first-principles model and a large prediction horizon, a comprehensive study of the resulting closed-loop behavior is carried out to evaluate the closed-loop stability, performance, and robustness properties of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信