{"title":"线性二阶矢量积分微分方程的稳定性","authors":"Leonid Berezansky , Alexander Domoshnitsky","doi":"10.1016/j.rinam.2025.100634","DOIUrl":null,"url":null,"abstract":"<div><div>Explicit sufficient conditions for uniform exponential stability of two-dimensional linear vector integro-differential equations have been established. These criteria are novel and remain valid even in the special case of second-order linear ordinary vector differential equations. The proofs leverage the Bohl–Perron theorem, incorporate a priori estimates of solutions. An illustrative example is provided to demonstrate the applicability of the results.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100634"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability for linear second order vector integro-differential equations\",\"authors\":\"Leonid Berezansky , Alexander Domoshnitsky\",\"doi\":\"10.1016/j.rinam.2025.100634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Explicit sufficient conditions for uniform exponential stability of two-dimensional linear vector integro-differential equations have been established. These criteria are novel and remain valid even in the special case of second-order linear ordinary vector differential equations. The proofs leverage the Bohl–Perron theorem, incorporate a priori estimates of solutions. An illustrative example is provided to demonstrate the applicability of the results.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100634\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stability for linear second order vector integro-differential equations
Explicit sufficient conditions for uniform exponential stability of two-dimensional linear vector integro-differential equations have been established. These criteria are novel and remain valid even in the special case of second-order linear ordinary vector differential equations. The proofs leverage the Bohl–Perron theorem, incorporate a priori estimates of solutions. An illustrative example is provided to demonstrate the applicability of the results.