Ilker Kiliccioglu , Ahmad Badreddin Musatat , Gorkem Dulger , Alparslan Atahan , Basaran Dulger , Mustafa Zengin
{"title":"喹啉-查尔酮复合物的合理设计、生物学和硅评价:一种新的抗菌和抗癌药物","authors":"Ilker Kiliccioglu , Ahmad Badreddin Musatat , Gorkem Dulger , Alparslan Atahan , Basaran Dulger , Mustafa Zengin","doi":"10.1016/j.compbiolchem.2025.108675","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the synthesis, antimicrobial, anticancer, and in silico properties of novel quinoline-chalcone hybrids (<strong>nQCa-l</strong>), which were synthesized and characterized. Their antimicrobial activity revealed broad-spectrum efficacy, with compound 2QC-h demonstrating superior potency compared to several standard antibiotics and antifungals. The anticancer potential was assessed against gastrointestinal system cancer cell lines (AGS, HepG2, HCT116), where 2QC-h emerged as the most potent antiproliferative agent, often surpassing oxaliplatin in efficacy, particularly in AGS gastric cancer cells. Mechanistic studies have demonstrated that 2QC-h synergistically induces apoptosis and inhibits epithelial-mesenchymal transition (EMT) in AGS cells through the intrinsic mitochondrial pathway, thereby enhancing the anticancer effect of oxaliplatin. Crucially, 2QC-h exhibited selective cytotoxicity towards gastrointestinal system cancer cells (AGS cells: 4.85 ± 0.22 µg/mL and 2.66 ± 0.58 µg/mL, HCT116 cells: 6.61 ± 0.29 µg/mL and 2.39 ± 0.57 µg/mL, and HepG2 cells: 9.14 ± 0.49 µg/mL and 6.15 ± 0.27 µg/mL for 24 h and 48 h, respectively) and minimal morphological effects on healthy HUVEC cells. Computational studies, including DFT analysis, MEP, RDG, ELF, LOL, and ALIE, provided comprehensive insights into the electronic structure, reactivity, and non-covalent interactions, elucidating the structure-activity relationships (SAR). Molecular docking simulations identified VEGFR-2 and EGFR as the preferential targets for these derivatives, with nanomolar binding affinities, which correlated strongly with experimental cytotoxic potencies. ADME highlighted favorable drug-likeness properties while identifying areas for further optimization. Overall, this research establishes quinoline-chalcone hybrids as promising multi-target therapeutic agents with significant potential for developing novel antimicrobial and anticancer drugs.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"120 ","pages":"Article 108675"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design, biological and in-silico evaluation of quinoline-chalcone hybrids: A new series of antimicrobial and anticancer agents\",\"authors\":\"Ilker Kiliccioglu , Ahmad Badreddin Musatat , Gorkem Dulger , Alparslan Atahan , Basaran Dulger , Mustafa Zengin\",\"doi\":\"10.1016/j.compbiolchem.2025.108675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the synthesis, antimicrobial, anticancer, and in silico properties of novel quinoline-chalcone hybrids (<strong>nQCa-l</strong>), which were synthesized and characterized. Their antimicrobial activity revealed broad-spectrum efficacy, with compound 2QC-h demonstrating superior potency compared to several standard antibiotics and antifungals. The anticancer potential was assessed against gastrointestinal system cancer cell lines (AGS, HepG2, HCT116), where 2QC-h emerged as the most potent antiproliferative agent, often surpassing oxaliplatin in efficacy, particularly in AGS gastric cancer cells. Mechanistic studies have demonstrated that 2QC-h synergistically induces apoptosis and inhibits epithelial-mesenchymal transition (EMT) in AGS cells through the intrinsic mitochondrial pathway, thereby enhancing the anticancer effect of oxaliplatin. Crucially, 2QC-h exhibited selective cytotoxicity towards gastrointestinal system cancer cells (AGS cells: 4.85 ± 0.22 µg/mL and 2.66 ± 0.58 µg/mL, HCT116 cells: 6.61 ± 0.29 µg/mL and 2.39 ± 0.57 µg/mL, and HepG2 cells: 9.14 ± 0.49 µg/mL and 6.15 ± 0.27 µg/mL for 24 h and 48 h, respectively) and minimal morphological effects on healthy HUVEC cells. Computational studies, including DFT analysis, MEP, RDG, ELF, LOL, and ALIE, provided comprehensive insights into the electronic structure, reactivity, and non-covalent interactions, elucidating the structure-activity relationships (SAR). Molecular docking simulations identified VEGFR-2 and EGFR as the preferential targets for these derivatives, with nanomolar binding affinities, which correlated strongly with experimental cytotoxic potencies. ADME highlighted favorable drug-likeness properties while identifying areas for further optimization. Overall, this research establishes quinoline-chalcone hybrids as promising multi-target therapeutic agents with significant potential for developing novel antimicrobial and anticancer drugs.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"120 \",\"pages\":\"Article 108675\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927125003366\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125003366","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Rational design, biological and in-silico evaluation of quinoline-chalcone hybrids: A new series of antimicrobial and anticancer agents
This study investigates the synthesis, antimicrobial, anticancer, and in silico properties of novel quinoline-chalcone hybrids (nQCa-l), which were synthesized and characterized. Their antimicrobial activity revealed broad-spectrum efficacy, with compound 2QC-h demonstrating superior potency compared to several standard antibiotics and antifungals. The anticancer potential was assessed against gastrointestinal system cancer cell lines (AGS, HepG2, HCT116), where 2QC-h emerged as the most potent antiproliferative agent, often surpassing oxaliplatin in efficacy, particularly in AGS gastric cancer cells. Mechanistic studies have demonstrated that 2QC-h synergistically induces apoptosis and inhibits epithelial-mesenchymal transition (EMT) in AGS cells through the intrinsic mitochondrial pathway, thereby enhancing the anticancer effect of oxaliplatin. Crucially, 2QC-h exhibited selective cytotoxicity towards gastrointestinal system cancer cells (AGS cells: 4.85 ± 0.22 µg/mL and 2.66 ± 0.58 µg/mL, HCT116 cells: 6.61 ± 0.29 µg/mL and 2.39 ± 0.57 µg/mL, and HepG2 cells: 9.14 ± 0.49 µg/mL and 6.15 ± 0.27 µg/mL for 24 h and 48 h, respectively) and minimal morphological effects on healthy HUVEC cells. Computational studies, including DFT analysis, MEP, RDG, ELF, LOL, and ALIE, provided comprehensive insights into the electronic structure, reactivity, and non-covalent interactions, elucidating the structure-activity relationships (SAR). Molecular docking simulations identified VEGFR-2 and EGFR as the preferential targets for these derivatives, with nanomolar binding affinities, which correlated strongly with experimental cytotoxic potencies. ADME highlighted favorable drug-likeness properties while identifying areas for further optimization. Overall, this research establishes quinoline-chalcone hybrids as promising multi-target therapeutic agents with significant potential for developing novel antimicrobial and anticancer drugs.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.