Liang Wang , Li Cao , Xiaoya Wang , Yufei Liu , Weiwei Zhang , Yurui Gou , Jun He , Jiao Huo , Xiaomeng Li , Jinyao Chen
{"title":"聚对苯二甲酸乙二醇酯(PET)醋酸迁移液对大鼠重复剂量暴露的遗传毒性作用模式探讨","authors":"Liang Wang , Li Cao , Xiaoya Wang , Yufei Liu , Weiwei Zhang , Yurui Gou , Jun He , Jiao Huo , Xiaomeng Li , Jinyao Chen","doi":"10.1016/j.mrgentox.2025.503886","DOIUrl":null,"url":null,"abstract":"<div><div>As a commonly used material that contacts food, polyethylene glycol terephthalate (PET) may interact with food, and since certain components can migrate, this has become a food safety concern. This study aims to investigate the genotoxicity of PET acetic acid migration solution and its toxic mode of action using an <em>in vivo</em> multi-endpoint genotoxicity evaluation system and quantitative liver proteomics analysis. Forty-eight male Sprague–Dawley rats were randomly divided into eight groups: the PET acetic acid migration solution group, the acetic acid group, the phosphate-buffered saline (PBS) control group, the N-ethyl-N-nitrosourea (ENU) positive control group, and their corresponding satellite groups. PBS and ENU were administered by gavage, while the PET acetic acid migration solution and acetic acid were administered orally in the drinking water. The exposure duration was 35 days, followed by a recovery period of 15 days. The PET acetic acid migration solution can cause heart, liver, and kidney injury in rats. On the 15th day, mutations were seen in the <em>Pig-a</em> gene test. On the 35th day, DNA damage was observed in peripheral blood and liver cells. Gene ontology (GO) analysis of the liver proteomics revealed enrichment in DNA metabolism and binding processes, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted the DNA replication pathway. Immunohistochemical analysis demonstrated a significant increase in 8-hydroxydeoxyguanosine (8-OHdG) and a decrease in single-stranded-binding (SSB) protein in the PET acetic acid migration solution group. In summary, the PET acetic acid migration solution has the potential to induce DNA damage, possibly by inhibiting DNA replication and DNA repair pathways. However, the likelihood of genetic toxicity is low.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"907 ","pages":"Article 503886"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotoxicity mode of action exploration of polyethylene glycol terephthalate (PET) acetic acid migration solution under repeated-dose exposure in rats\",\"authors\":\"Liang Wang , Li Cao , Xiaoya Wang , Yufei Liu , Weiwei Zhang , Yurui Gou , Jun He , Jiao Huo , Xiaomeng Li , Jinyao Chen\",\"doi\":\"10.1016/j.mrgentox.2025.503886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a commonly used material that contacts food, polyethylene glycol terephthalate (PET) may interact with food, and since certain components can migrate, this has become a food safety concern. This study aims to investigate the genotoxicity of PET acetic acid migration solution and its toxic mode of action using an <em>in vivo</em> multi-endpoint genotoxicity evaluation system and quantitative liver proteomics analysis. Forty-eight male Sprague–Dawley rats were randomly divided into eight groups: the PET acetic acid migration solution group, the acetic acid group, the phosphate-buffered saline (PBS) control group, the N-ethyl-N-nitrosourea (ENU) positive control group, and their corresponding satellite groups. PBS and ENU were administered by gavage, while the PET acetic acid migration solution and acetic acid were administered orally in the drinking water. The exposure duration was 35 days, followed by a recovery period of 15 days. The PET acetic acid migration solution can cause heart, liver, and kidney injury in rats. On the 15th day, mutations were seen in the <em>Pig-a</em> gene test. On the 35th day, DNA damage was observed in peripheral blood and liver cells. Gene ontology (GO) analysis of the liver proteomics revealed enrichment in DNA metabolism and binding processes, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted the DNA replication pathway. Immunohistochemical analysis demonstrated a significant increase in 8-hydroxydeoxyguanosine (8-OHdG) and a decrease in single-stranded-binding (SSB) protein in the PET acetic acid migration solution group. In summary, the PET acetic acid migration solution has the potential to induce DNA damage, possibly by inhibiting DNA replication and DNA repair pathways. However, the likelihood of genetic toxicity is low.</div></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"907 \",\"pages\":\"Article 503886\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571825000452\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571825000452","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genotoxicity mode of action exploration of polyethylene glycol terephthalate (PET) acetic acid migration solution under repeated-dose exposure in rats
As a commonly used material that contacts food, polyethylene glycol terephthalate (PET) may interact with food, and since certain components can migrate, this has become a food safety concern. This study aims to investigate the genotoxicity of PET acetic acid migration solution and its toxic mode of action using an in vivo multi-endpoint genotoxicity evaluation system and quantitative liver proteomics analysis. Forty-eight male Sprague–Dawley rats were randomly divided into eight groups: the PET acetic acid migration solution group, the acetic acid group, the phosphate-buffered saline (PBS) control group, the N-ethyl-N-nitrosourea (ENU) positive control group, and their corresponding satellite groups. PBS and ENU were administered by gavage, while the PET acetic acid migration solution and acetic acid were administered orally in the drinking water. The exposure duration was 35 days, followed by a recovery period of 15 days. The PET acetic acid migration solution can cause heart, liver, and kidney injury in rats. On the 15th day, mutations were seen in the Pig-a gene test. On the 35th day, DNA damage was observed in peripheral blood and liver cells. Gene ontology (GO) analysis of the liver proteomics revealed enrichment in DNA metabolism and binding processes, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted the DNA replication pathway. Immunohistochemical analysis demonstrated a significant increase in 8-hydroxydeoxyguanosine (8-OHdG) and a decrease in single-stranded-binding (SSB) protein in the PET acetic acid migration solution group. In summary, the PET acetic acid migration solution has the potential to induce DNA damage, possibly by inhibiting DNA replication and DNA repair pathways. However, the likelihood of genetic toxicity is low.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.