具有织构双相组织的Si掺杂Ni-Mn-Ti多晶合金的长期稳定弹热效应

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guoyao Zhang , Yueping Wang , Cong Liu , Daoyong Cong , Yafei Kuang , Jiajing Yang , Bo Yang , Liang Zuo , Zongbin Li
{"title":"具有织构双相组织的Si掺杂Ni-Mn-Ti多晶合金的长期稳定弹热效应","authors":"Guoyao Zhang ,&nbsp;Yueping Wang ,&nbsp;Cong Liu ,&nbsp;Daoyong Cong ,&nbsp;Yafei Kuang ,&nbsp;Jiajing Yang ,&nbsp;Bo Yang ,&nbsp;Liang Zuo ,&nbsp;Zongbin Li","doi":"10.1016/j.actamat.2025.121541","DOIUrl":null,"url":null,"abstract":"<div><div>Heusler-type Ni-Mn-Ti shape memory alloys have emerged as promising candidates for elastocaloric cooling applications owing to their colossal elastocaloric effect. However, simultaneously achieving high cooling capacity and long fatigue life in polycrystalline alloys remains challenging because of their inherent brittleness. In this study, we demonstrate a significant enhancement in the long-term elastocaloric performance of Ni-Mn-Ti polycrystalline alloys by developing a textured dual-phase microstructure. Through the combination of non-transforming Mn<sub>2</sub>Ti precipitates induced by Si substitution for Ni and &lt;001&gt;<em><sub>A</sub></em> oriented austenite matrix formed by directional solidification, exceptional cyclability over one million compressive loading-unloading cycles is achieved in a directionally solidified Ni<sub>46</sub>Mn<sub>32.5</sub>Ti<sub>17.5</sub>Si<sub>4</sub> alloy, representing an improvement in the fatigue life of existing Heusler-type elastocaloric alloys by two or three orders of magnitude. Notably, even after this long-term cycling, a substantial adiabatic temperature variation of –12.7 K can still be obtained upon unloading from a moderate stress of 566 MPa. Such remarkable elastocaloric properties arise from the synergy of precipitate hardening and microstructure texturing, which not only significantly improves the fatigue life by enhancing resistance to dislocation motion and reducing stress hysteresis, but also enables a pronounced elastocaloric response under low driving stress.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"301 ","pages":"Article 121541"},"PeriodicalIF":9.3000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable long-term elastocaloric effect in Si doped Ni-Mn-Ti polycrystalline alloys with a textured dual-phase microstructure\",\"authors\":\"Guoyao Zhang ,&nbsp;Yueping Wang ,&nbsp;Cong Liu ,&nbsp;Daoyong Cong ,&nbsp;Yafei Kuang ,&nbsp;Jiajing Yang ,&nbsp;Bo Yang ,&nbsp;Liang Zuo ,&nbsp;Zongbin Li\",\"doi\":\"10.1016/j.actamat.2025.121541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heusler-type Ni-Mn-Ti shape memory alloys have emerged as promising candidates for elastocaloric cooling applications owing to their colossal elastocaloric effect. However, simultaneously achieving high cooling capacity and long fatigue life in polycrystalline alloys remains challenging because of their inherent brittleness. In this study, we demonstrate a significant enhancement in the long-term elastocaloric performance of Ni-Mn-Ti polycrystalline alloys by developing a textured dual-phase microstructure. Through the combination of non-transforming Mn<sub>2</sub>Ti precipitates induced by Si substitution for Ni and &lt;001&gt;<em><sub>A</sub></em> oriented austenite matrix formed by directional solidification, exceptional cyclability over one million compressive loading-unloading cycles is achieved in a directionally solidified Ni<sub>46</sub>Mn<sub>32.5</sub>Ti<sub>17.5</sub>Si<sub>4</sub> alloy, representing an improvement in the fatigue life of existing Heusler-type elastocaloric alloys by two or three orders of magnitude. Notably, even after this long-term cycling, a substantial adiabatic temperature variation of –12.7 K can still be obtained upon unloading from a moderate stress of 566 MPa. Such remarkable elastocaloric properties arise from the synergy of precipitate hardening and microstructure texturing, which not only significantly improves the fatigue life by enhancing resistance to dislocation motion and reducing stress hysteresis, but also enables a pronounced elastocaloric response under low driving stress.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"301 \",\"pages\":\"Article 121541\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425008274\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425008274","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

heusler型Ni-Mn-Ti形状记忆合金由于其巨大的弹性热效应而成为弹热冷却应用的有希望的候选者。然而,由于多晶合金固有的脆性,同时实现高冷却能力和长疲劳寿命仍然是一个挑战。在这项研究中,我们通过发展一种织构的双相组织,证明了Ni-Mn-Ti多晶合金的长期弹热性能有显著的提高。通过Si取代Ni诱导的不转变的Mn2Ti析出相和定向凝固形成的取向奥氏体基体的结合,在Ni46Mn32.5Ti17.5Si4合金中获得了超过一百万次压缩加载-卸载循环的优异循环性能,将现有的heusler型弹热合金的疲劳寿命提高了两到三个数量级。值得注意的是,即使经过这种长期循环,在中等应力566 MPa下卸载时,仍然可以获得-12.7 K的大量绝热温度变化。这种优异的弹热性能是析出相硬化和微观组织织构共同作用的结果,不仅通过增强对位错运动的抵抗和减少应力滞后显著提高了疲劳寿命,而且在低驱动应力下也能产生显著的弹热响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable long-term elastocaloric effect in Si doped Ni-Mn-Ti polycrystalline alloys with a textured dual-phase microstructure

Stable long-term elastocaloric effect in Si doped Ni-Mn-Ti polycrystalline alloys with a textured dual-phase microstructure

Stable long-term elastocaloric effect in Si doped Ni-Mn-Ti polycrystalline alloys with a textured dual-phase microstructure
Heusler-type Ni-Mn-Ti shape memory alloys have emerged as promising candidates for elastocaloric cooling applications owing to their colossal elastocaloric effect. However, simultaneously achieving high cooling capacity and long fatigue life in polycrystalline alloys remains challenging because of their inherent brittleness. In this study, we demonstrate a significant enhancement in the long-term elastocaloric performance of Ni-Mn-Ti polycrystalline alloys by developing a textured dual-phase microstructure. Through the combination of non-transforming Mn2Ti precipitates induced by Si substitution for Ni and <001>A oriented austenite matrix formed by directional solidification, exceptional cyclability over one million compressive loading-unloading cycles is achieved in a directionally solidified Ni46Mn32.5Ti17.5Si4 alloy, representing an improvement in the fatigue life of existing Heusler-type elastocaloric alloys by two or three orders of magnitude. Notably, even after this long-term cycling, a substantial adiabatic temperature variation of –12.7 K can still be obtained upon unloading from a moderate stress of 566 MPa. Such remarkable elastocaloric properties arise from the synergy of precipitate hardening and microstructure texturing, which not only significantly improves the fatigue life by enhancing resistance to dislocation motion and reducing stress hysteresis, but also enables a pronounced elastocaloric response under low driving stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信