利用机械平衡校正HR-EBSD应力测量值

IF 12.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Eralp Demir, Anna Kareer, Chris Hardie, Edmund Tarleton
{"title":"利用机械平衡校正HR-EBSD应力测量值","authors":"Eralp Demir, Anna Kareer, Chris Hardie, Edmund Tarleton","doi":"10.1016/j.ijplas.2025.104464","DOIUrl":null,"url":null,"abstract":"High-resolution electron-backscatter diffraction (HR-EBSD) is widely adopted as a method to obtain local stress and strain distributions in both single-crystal and polycrystalline materials. In this study, we develop a finite element-based method that serves as a numerical correction to refine the relative stress measurements captured experimentally from HR-EBSD and to ensure that the measurements satisfy mechanical equilibrium and traction-free surface constraints. The method provides a calculation of stress for each of the reference points instead of assuming the reference point stresses are zero, capturing the grain-to-grain variation in polycrystalline EBSD maps. The experimental data including a cross section of nanoindentation in unirradiated and heavy-ion-irradiated single-crystals of iron as well as polycrystalline austenitic stainless steel are analysed, and the method improves the measured stresses near slip bands, grain boundaries, and hard phases while keeping the stresses physically consistent with mechanical equilibrium and ensuring that free surfaces are traction-free. The three-dimensional analysis enables the fulfilment of traction-free surface constraints, resulting in zero out-of-plane shear stress components on the free surfaces while maintaining nonzero out-of-plane shear stress components below the surface. To demonstrate the validity of this approach, the method is applied to synthetically generated relative stress data for a uniform bending case, and the method successfully predicts the stress distributions.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"29 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using mechanical equilibrium to correct HR-EBSD stress measurements\",\"authors\":\"Eralp Demir, Anna Kareer, Chris Hardie, Edmund Tarleton\",\"doi\":\"10.1016/j.ijplas.2025.104464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution electron-backscatter diffraction (HR-EBSD) is widely adopted as a method to obtain local stress and strain distributions in both single-crystal and polycrystalline materials. In this study, we develop a finite element-based method that serves as a numerical correction to refine the relative stress measurements captured experimentally from HR-EBSD and to ensure that the measurements satisfy mechanical equilibrium and traction-free surface constraints. The method provides a calculation of stress for each of the reference points instead of assuming the reference point stresses are zero, capturing the grain-to-grain variation in polycrystalline EBSD maps. The experimental data including a cross section of nanoindentation in unirradiated and heavy-ion-irradiated single-crystals of iron as well as polycrystalline austenitic stainless steel are analysed, and the method improves the measured stresses near slip bands, grain boundaries, and hard phases while keeping the stresses physically consistent with mechanical equilibrium and ensuring that free surfaces are traction-free. The three-dimensional analysis enables the fulfilment of traction-free surface constraints, resulting in zero out-of-plane shear stress components on the free surfaces while maintaining nonzero out-of-plane shear stress components below the surface. To demonstrate the validity of this approach, the method is applied to synthetically generated relative stress data for a uniform bending case, and the method successfully predicts the stress distributions.\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijplas.2025.104464\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104464","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率电子背散射衍射(HR-EBSD)作为一种获得单晶和多晶材料局部应力应变分布的方法被广泛采用。在本研究中,我们开发了一种基于有限元的方法,作为数值校正,以改进从HR-EBSD实验中捕获的相对应力测量,并确保测量结果满足机械平衡和无牵引力表面约束。该方法为每个参考点提供应力计算,而不是假设参考点应力为零,从而捕获多晶EBSD图中晶粒间的变化。对未辐照和重离子辐照单晶铁和多晶奥氏体不锈钢的纳米压痕截面实验数据进行了分析,结果表明,该方法提高了滑移带、晶界和硬相附近的应力测量值,同时保持了应力与力学平衡的物理一致,并确保了自由表面无牵引力。三维分析能够满足无牵引力的表面约束,从而使自由表面上的面外剪应力分量为零,而表面以下的面外剪应力分量为非零。为了验证该方法的有效性,将该方法应用于均匀弯曲情况下综合生成的相对应力数据,并成功地预测了应力分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using mechanical equilibrium to correct HR-EBSD stress measurements
High-resolution electron-backscatter diffraction (HR-EBSD) is widely adopted as a method to obtain local stress and strain distributions in both single-crystal and polycrystalline materials. In this study, we develop a finite element-based method that serves as a numerical correction to refine the relative stress measurements captured experimentally from HR-EBSD and to ensure that the measurements satisfy mechanical equilibrium and traction-free surface constraints. The method provides a calculation of stress for each of the reference points instead of assuming the reference point stresses are zero, capturing the grain-to-grain variation in polycrystalline EBSD maps. The experimental data including a cross section of nanoindentation in unirradiated and heavy-ion-irradiated single-crystals of iron as well as polycrystalline austenitic stainless steel are analysed, and the method improves the measured stresses near slip bands, grain boundaries, and hard phases while keeping the stresses physically consistent with mechanical equilibrium and ensuring that free surfaces are traction-free. The three-dimensional analysis enables the fulfilment of traction-free surface constraints, resulting in zero out-of-plane shear stress components on the free surfaces while maintaining nonzero out-of-plane shear stress components below the surface. To demonstrate the validity of this approach, the method is applied to synthetically generated relative stress data for a uniform bending case, and the method successfully predicts the stress distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信