耦合因果关系和可解释的机器学习揭示C-N与超分子cu -杯[8]芳烃催化剂偶联的反应坐标。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. A. Talmazan, J. Gamper, I. Castillo, T. S. Hofer and M. Podewitz
{"title":"耦合因果关系和可解释的机器学习揭示C-N与超分子cu -杯[8]芳烃催化剂偶联的反应坐标。","authors":"R. A. Talmazan, J. Gamper, I. Castillo, T. S. Hofer and M. Podewitz","doi":"10.1039/D5DD00216H","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular 3d transition-metal catalysts are large, flexible systems with intricate interactions, resulting in complex reaction coordinates. To capture their dynamic nature, we developed a broadly applicable, high-throughput workflow, that leverages quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) in explicit solvent, to investigate a Cu(<small>I</small>)-calix[8]arene-catalysed C–N coupling reaction. The system complexity and high amount of data generated from sampling the reaction requires automated analyses. To identify and quantify the reaction coordinate from noisy simulation trajectories, we applied interpretable machine learning techniques (Lasso, Random Forest, Logistic Regression) in a consensus model, alongside dimensionality reduction methods (PCA, LDA, tICA). By employing a Granger Causality model, we move beyond the traditional view of a reaction coordinate, by defining it instead as a sequence of molecular motions leading up to the reaction.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2954-2971"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12421827/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coupling causality and interpretable machine learning to reveal the reaction coordinate of C–N coupling with a supramolecular Cu-calix[8]arene catalyst\",\"authors\":\"R. A. Talmazan, J. Gamper, I. Castillo, T. S. Hofer and M. Podewitz\",\"doi\":\"10.1039/D5DD00216H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supramolecular 3d transition-metal catalysts are large, flexible systems with intricate interactions, resulting in complex reaction coordinates. To capture their dynamic nature, we developed a broadly applicable, high-throughput workflow, that leverages quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) in explicit solvent, to investigate a Cu(<small>I</small>)-calix[8]arene-catalysed C–N coupling reaction. The system complexity and high amount of data generated from sampling the reaction requires automated analyses. To identify and quantify the reaction coordinate from noisy simulation trajectories, we applied interpretable machine learning techniques (Lasso, Random Forest, Logistic Regression) in a consensus model, alongside dimensionality reduction methods (PCA, LDA, tICA). By employing a Granger Causality model, we move beyond the traditional view of a reaction coordinate, by defining it instead as a sequence of molecular motions leading up to the reaction.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 10\",\"pages\":\" 2954-2971\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12421827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00216h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00216h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超分子三维过渡金属催化剂是具有复杂相互作用的大而灵活的系统,导致复杂的反应坐标。为了捕捉它们的动态性质,我们开发了一种广泛适用的高通量工作流程,利用量子力学/分子力学分子动力学(QM/MM MD)在显式溶剂中研究Cu(i)-杯[8]芳烃催化的C-N偶联反应。系统的复杂性和从采样反应中产生的大量数据需要自动分析。为了从噪声模拟轨迹中识别和量化反应坐标,我们在共识模型中应用了可解释的机器学习技术(Lasso、随机森林、逻辑回归),以及降维方法(PCA、LDA、tICA)。通过使用格兰杰因果关系模型,我们超越了传统的反应坐标观点,而是将其定义为导致反应的一系列分子运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coupling causality and interpretable machine learning to reveal the reaction coordinate of C–N coupling with a supramolecular Cu-calix[8]arene catalyst

Coupling causality and interpretable machine learning to reveal the reaction coordinate of C–N coupling with a supramolecular Cu-calix[8]arene catalyst

Supramolecular 3d transition-metal catalysts are large, flexible systems with intricate interactions, resulting in complex reaction coordinates. To capture their dynamic nature, we developed a broadly applicable, high-throughput workflow, that leverages quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) in explicit solvent, to investigate a Cu(I)-calix[8]arene-catalysed C–N coupling reaction. The system complexity and high amount of data generated from sampling the reaction requires automated analyses. To identify and quantify the reaction coordinate from noisy simulation trajectories, we applied interpretable machine learning techniques (Lasso, Random Forest, Logistic Regression) in a consensus model, alongside dimensionality reduction methods (PCA, LDA, tICA). By employing a Granger Causality model, we move beyond the traditional view of a reaction coordinate, by defining it instead as a sequence of molecular motions leading up to the reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信