Shuhei Kitamura, Ayumi Taguchi, Kana Tamai, Yoko Yamamoto, Anh Quynh Duong, Daisuke Yoshimoto, Ayako Mori, Aya Ishizaka, Saki Tsuchimochi, Kenbun Sone, Masahito Kawazu, Katsutoshi Oda, Yasushi Hirota
{"title":"卵巢癌和子宫内膜癌中的DNA甲基化:PARP抑制剂和ICI反应的预测和机制作用。","authors":"Shuhei Kitamura, Ayumi Taguchi, Kana Tamai, Yoko Yamamoto, Anh Quynh Duong, Daisuke Yoshimoto, Ayako Mori, Aya Ishizaka, Saki Tsuchimochi, Kenbun Sone, Masahito Kawazu, Katsutoshi Oda, Yasushi Hirota","doi":"10.1111/cas.70189","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer treatment is shifting from an organ-based approach to one driven by biological phenotypes, emphasizing the need to understand molecular mechanisms. DNA methylation plays a pivotal role in tumor biology, not only through gene silencing but also by inducing distinct behaviors beyond genetic mutations. In gynecologic cancers, molecular diagnostics, such as homologous recombination deficiency status guiding poly(ADP-ribose) polymerase (PARP) inhibitor therapy in ovarian cancer and deficient mismatch repair/microsatellite instability-high status informing immune checkpoint inhibitor (ICI) therapy in endometrial cancer have already been used in clinical practice. However, tumors with epigenetically driven functional deficiencies, such as BRCA1 promoter methylation in homologous recombination-deficient ovarian cancers or MLH1 promoter methylation in deficient mismatch repair/microsatellite instability-high endometrial cancers, often exhibit poorer prognoses and reduced therapeutic responses compared to their genetically mutated counterparts. Given the unique impact of DNA methylation, precise detection is crucial. Integrating methylation analysis into molecular classification could refine diagnostics-both by identifying mechanistic contributors to treatment response and by serving as predictive biomarkers for therapy selection-thereby optimizing patient management. This review explores the role of DNA methylation in modulating responses to PARP inhibitors and ICIs, highlights its promise as a biomarker in precision oncology, and outlines current developments and clinical challenges in BRCA1 and MLH1 methylation assays.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Methylation in Ovarian and Endometrial Cancers: Predictive and Mechanistic Roles in PARP Inhibitor and ICI Response.\",\"authors\":\"Shuhei Kitamura, Ayumi Taguchi, Kana Tamai, Yoko Yamamoto, Anh Quynh Duong, Daisuke Yoshimoto, Ayako Mori, Aya Ishizaka, Saki Tsuchimochi, Kenbun Sone, Masahito Kawazu, Katsutoshi Oda, Yasushi Hirota\",\"doi\":\"10.1111/cas.70189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer treatment is shifting from an organ-based approach to one driven by biological phenotypes, emphasizing the need to understand molecular mechanisms. DNA methylation plays a pivotal role in tumor biology, not only through gene silencing but also by inducing distinct behaviors beyond genetic mutations. In gynecologic cancers, molecular diagnostics, such as homologous recombination deficiency status guiding poly(ADP-ribose) polymerase (PARP) inhibitor therapy in ovarian cancer and deficient mismatch repair/microsatellite instability-high status informing immune checkpoint inhibitor (ICI) therapy in endometrial cancer have already been used in clinical practice. However, tumors with epigenetically driven functional deficiencies, such as BRCA1 promoter methylation in homologous recombination-deficient ovarian cancers or MLH1 promoter methylation in deficient mismatch repair/microsatellite instability-high endometrial cancers, often exhibit poorer prognoses and reduced therapeutic responses compared to their genetically mutated counterparts. Given the unique impact of DNA methylation, precise detection is crucial. Integrating methylation analysis into molecular classification could refine diagnostics-both by identifying mechanistic contributors to treatment response and by serving as predictive biomarkers for therapy selection-thereby optimizing patient management. This review explores the role of DNA methylation in modulating responses to PARP inhibitors and ICIs, highlights its promise as a biomarker in precision oncology, and outlines current developments and clinical challenges in BRCA1 and MLH1 methylation assays.</p>\",\"PeriodicalId\":48943,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cas.70189\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.70189","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
DNA Methylation in Ovarian and Endometrial Cancers: Predictive and Mechanistic Roles in PARP Inhibitor and ICI Response.
Cancer treatment is shifting from an organ-based approach to one driven by biological phenotypes, emphasizing the need to understand molecular mechanisms. DNA methylation plays a pivotal role in tumor biology, not only through gene silencing but also by inducing distinct behaviors beyond genetic mutations. In gynecologic cancers, molecular diagnostics, such as homologous recombination deficiency status guiding poly(ADP-ribose) polymerase (PARP) inhibitor therapy in ovarian cancer and deficient mismatch repair/microsatellite instability-high status informing immune checkpoint inhibitor (ICI) therapy in endometrial cancer have already been used in clinical practice. However, tumors with epigenetically driven functional deficiencies, such as BRCA1 promoter methylation in homologous recombination-deficient ovarian cancers or MLH1 promoter methylation in deficient mismatch repair/microsatellite instability-high endometrial cancers, often exhibit poorer prognoses and reduced therapeutic responses compared to their genetically mutated counterparts. Given the unique impact of DNA methylation, precise detection is crucial. Integrating methylation analysis into molecular classification could refine diagnostics-both by identifying mechanistic contributors to treatment response and by serving as predictive biomarkers for therapy selection-thereby optimizing patient management. This review explores the role of DNA methylation in modulating responses to PARP inhibitors and ICIs, highlights its promise as a biomarker in precision oncology, and outlines current developments and clinical challenges in BRCA1 and MLH1 methylation assays.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.