araCNA:使用长程序列模型的体细胞拷贝数分析。

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-09-09 eCollection Date: 2025-09-01 DOI:10.1093/nargab/lqaf124
Ellen Visscher, Christopher Yau
{"title":"araCNA:使用长程序列模型的体细胞拷贝数分析。","authors":"Ellen Visscher, Christopher Yau","doi":"10.1093/nargab/lqaf124","DOIUrl":null,"url":null,"abstract":"<p><p>Somatic copy number alterations (CNAs) are hallmarks of cancer. Current algorithms that call CNAs from whole-genome sequenced (WGS) data have not exploited deep learning methods owing to computational scaling limitations. Here, we present a novel deep-learning approach, araCNA, trained only on simulated data that can accurately predict CNAs in real WGS cancer genomes. araCNA uses novel transformer alternatives (e.g. Mamba) to handle genomic-scale sequence lengths (∼1M) and learn long-range interactions. Results are extremely accurate on simulated data, and this zero-shot approach is on par with existing methods when applied to 50 WGS samples from the Cancer Genome Atlas. Notably, our approach requires only a tumour sample and not a matched normal sample, has fewer markers of overfitting, and performs inference in only a few minutes. araCNA demonstrates how domain knowledge can be used to simulate training sets that harness the power of modern machine learning in biological applications.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 3","pages":"lqaf124"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418177/pdf/","citationCount":"0","resultStr":"{\"title\":\"araCNA: somatic copy number profiling using long-range sequence models.\",\"authors\":\"Ellen Visscher, Christopher Yau\",\"doi\":\"10.1093/nargab/lqaf124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Somatic copy number alterations (CNAs) are hallmarks of cancer. Current algorithms that call CNAs from whole-genome sequenced (WGS) data have not exploited deep learning methods owing to computational scaling limitations. Here, we present a novel deep-learning approach, araCNA, trained only on simulated data that can accurately predict CNAs in real WGS cancer genomes. araCNA uses novel transformer alternatives (e.g. Mamba) to handle genomic-scale sequence lengths (∼1M) and learn long-range interactions. Results are extremely accurate on simulated data, and this zero-shot approach is on par with existing methods when applied to 50 WGS samples from the Cancer Genome Atlas. Notably, our approach requires only a tumour sample and not a matched normal sample, has fewer markers of overfitting, and performs inference in only a few minutes. araCNA demonstrates how domain knowledge can be used to simulate training sets that harness the power of modern machine learning in biological applications.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 3\",\"pages\":\"lqaf124\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqaf124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

体细胞拷贝数改变(CNAs)是癌症的标志。由于计算尺度的限制,目前从全基因组测序(WGS)数据中调用cna的算法尚未利用深度学习方法。在这里,我们提出了一种新的深度学习方法,araCNA,仅在模拟数据上进行训练,可以准确预测真实WGS癌症基因组中的CNAs。araCNA使用新的变压器替代品(例如Mamba)来处理基因组尺度的序列长度(~ 1M)并学习远程相互作用。结果在模拟数据上非常准确,当应用于来自癌症基因组图谱的50个WGS样本时,这种零射击方法与现有方法相当。值得注意的是,我们的方法只需要一个肿瘤样本,而不是一个匹配的正常样本,有更少的过拟合标记,并在几分钟内完成推理。araCNA演示了如何使用领域知识来模拟训练集,从而在生物学应用中利用现代机器学习的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
araCNA: somatic copy number profiling using long-range sequence models.

Somatic copy number alterations (CNAs) are hallmarks of cancer. Current algorithms that call CNAs from whole-genome sequenced (WGS) data have not exploited deep learning methods owing to computational scaling limitations. Here, we present a novel deep-learning approach, araCNA, trained only on simulated data that can accurately predict CNAs in real WGS cancer genomes. araCNA uses novel transformer alternatives (e.g. Mamba) to handle genomic-scale sequence lengths (∼1M) and learn long-range interactions. Results are extremely accurate on simulated data, and this zero-shot approach is on par with existing methods when applied to 50 WGS samples from the Cancer Genome Atlas. Notably, our approach requires only a tumour sample and not a matched normal sample, has fewer markers of overfitting, and performs inference in only a few minutes. araCNA demonstrates how domain knowledge can be used to simulate training sets that harness the power of modern machine learning in biological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信