黄芪黄芪苷的治疗潜力分析:对靶标相互作用和机制的见解。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Hai Duc Nguyen
{"title":"黄芪黄芪苷的治疗潜力分析:对靶标相互作用和机制的见解。","authors":"Hai Duc Nguyen","doi":"10.1080/00498254.2025.2559962","DOIUrl":null,"url":null,"abstract":"<p><p>Astragalin (AST), a flavonoid, shows promise for neurodegenerative diseases like Parkinson's disease (PD), cognitive impairment (CI), and depression. However, its efficacy in treating neurodegenerative diseases and the underlying molecular mechanisms remain unclear.This study aims to evaluate the metabolite profile, pharmacokinetics, toxicity, molecular targets, and potential biological activities of AST. Thirty-one AST metabolites formed through Phase II reactions (O-glucuronidation, O-sulfation, and methylation) were found.AST and its metabolites partially violate Lipinski's Rule of Five, including molecular weight and hydrogen bond donors, impacting drug-likeness. However, AST and its metabolites have favourable safety and potential anti-neurodegenerative and antidepressant effects.AST shows strong binding affinities with key neuroinflammatory targets, including IL1B, IL6, TNF, NOS2, PTGS2, SERT, caspase-3, caspase-8, and GABAa receptor, and network analysis highlights its association with neuroinflammatory pathways.Collectively, these findings support AST as a potential neurotherapeutic candidate and offer a basis for further <i>in vitro</i> and <i>in vivo</i> validation.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"1-20"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the therapeutic potential of astragalin: insights into target interactions and mechanisms.\",\"authors\":\"Hai Duc Nguyen\",\"doi\":\"10.1080/00498254.2025.2559962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astragalin (AST), a flavonoid, shows promise for neurodegenerative diseases like Parkinson's disease (PD), cognitive impairment (CI), and depression. However, its efficacy in treating neurodegenerative diseases and the underlying molecular mechanisms remain unclear.This study aims to evaluate the metabolite profile, pharmacokinetics, toxicity, molecular targets, and potential biological activities of AST. Thirty-one AST metabolites formed through Phase II reactions (O-glucuronidation, O-sulfation, and methylation) were found.AST and its metabolites partially violate Lipinski's Rule of Five, including molecular weight and hydrogen bond donors, impacting drug-likeness. However, AST and its metabolites have favourable safety and potential anti-neurodegenerative and antidepressant effects.AST shows strong binding affinities with key neuroinflammatory targets, including IL1B, IL6, TNF, NOS2, PTGS2, SERT, caspase-3, caspase-8, and GABAa receptor, and network analysis highlights its association with neuroinflammatory pathways.Collectively, these findings support AST as a potential neurotherapeutic candidate and offer a basis for further <i>in vitro</i> and <i>in vivo</i> validation.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2025.2559962\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2025.2559962","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

黄芪苷(AST)是一种类黄酮,有望治疗神经退行性疾病,如帕金森病(PD)、认知障碍(CI)和抑郁症。然而,其治疗神经退行性疾病的疗效和潜在的分子机制尚不清楚。本研究旨在评估AST的代谢物特征、药代动力学、毒性、分子靶点和潜在的生物活性。发现31个AST代谢物通过II期反应(o -葡萄糖醛酸化、o -硫酸化和甲基化)形成。AST及其代谢物部分违反了利平斯基的五定律,包括分子量和氢键供体,影响了药物的相似性。然而,AST及其代谢物具有良好的安全性和潜在的抗神经退行性和抗抑郁作用。AST与关键的神经炎症靶点,包括IL1B、IL6、TNF、NOS2、PTGS2、SERT、caspase-3、caspase-8和GABAa受体具有很强的结合亲和力,网络分析显示其与神经炎症通路的关联。总的来说,这些发现支持AST作为潜在的神经治疗候选药物,并为进一步的体外和体内验证提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the therapeutic potential of astragalin: insights into target interactions and mechanisms.

Astragalin (AST), a flavonoid, shows promise for neurodegenerative diseases like Parkinson's disease (PD), cognitive impairment (CI), and depression. However, its efficacy in treating neurodegenerative diseases and the underlying molecular mechanisms remain unclear.This study aims to evaluate the metabolite profile, pharmacokinetics, toxicity, molecular targets, and potential biological activities of AST. Thirty-one AST metabolites formed through Phase II reactions (O-glucuronidation, O-sulfation, and methylation) were found.AST and its metabolites partially violate Lipinski's Rule of Five, including molecular weight and hydrogen bond donors, impacting drug-likeness. However, AST and its metabolites have favourable safety and potential anti-neurodegenerative and antidepressant effects.AST shows strong binding affinities with key neuroinflammatory targets, including IL1B, IL6, TNF, NOS2, PTGS2, SERT, caspase-3, caspase-8, and GABAa receptor, and network analysis highlights its association with neuroinflammatory pathways.Collectively, these findings support AST as a potential neurotherapeutic candidate and offer a basis for further in vitro and in vivo validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Xenobiotica
Xenobiotica 医学-毒理学
CiteScore
3.80
自引率
5.60%
发文量
96
审稿时长
2 months
期刊介绍: Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信