当细胞思考:表观遗传调控的神经符号观点。

IF 3.2 Q1 GENETICS & HEREDITY
Environmental Epigenetics Pub Date : 2025-07-01 eCollection Date: 2025-01-01 DOI:10.1093/eep/dvaf022
Elia Mario Biganzoli, Valentina Bollati
{"title":"当细胞思考:表观遗传调控的神经符号观点。","authors":"Elia Mario Biganzoli, Valentina Bollati","doi":"10.1093/eep/dvaf022","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally viewed as a set of switches regulating gene expression, epigenetic mechanisms may also operate as an information-processing system with symbolic and subsymbolic features. In this framework, gene-specific DNA methylation and other localized epigenetic marks act as symbolic 'on/off' signals, while repetitive and noncoding DNA elements form a substrate for probabilistic, distributed responses to environmental stimuli. This hybrid perspective parallels machine-learning approaches, where symbolic representations are combined with subsymbolic methods (e.g. neural networks) to achieve robust learning and adaptation. Here, we propose that epigenetic regulation integrates these two dimensions (i.e. symbolic control and subsymbolic redundancy) to enable cells to adapt to complex environmental challenges, maintain heritable memory of past exposures, and evolve. In this manuscript, we introduce the concept of epigenetic intelligence, clarifying the synergy between discrete, 'symbolic' epigenetic switches (e.g. gene-specific DNA methylation) and the more 'subsymbolic', distributed features of the genome (e.g. repetitive elements methylation). This approach appears to be novel, as existing literature has not explicitly framed epigenetic regulation within a neuro-symbolic artificial intelligence perspective.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"11 1","pages":"dvaf022"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418969/pdf/","citationCount":"0","resultStr":"{\"title\":\"When cells think: a neuro-symbolic view of epigenetic regulation.\",\"authors\":\"Elia Mario Biganzoli, Valentina Bollati\",\"doi\":\"10.1093/eep/dvaf022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally viewed as a set of switches regulating gene expression, epigenetic mechanisms may also operate as an information-processing system with symbolic and subsymbolic features. In this framework, gene-specific DNA methylation and other localized epigenetic marks act as symbolic 'on/off' signals, while repetitive and noncoding DNA elements form a substrate for probabilistic, distributed responses to environmental stimuli. This hybrid perspective parallels machine-learning approaches, where symbolic representations are combined with subsymbolic methods (e.g. neural networks) to achieve robust learning and adaptation. Here, we propose that epigenetic regulation integrates these two dimensions (i.e. symbolic control and subsymbolic redundancy) to enable cells to adapt to complex environmental challenges, maintain heritable memory of past exposures, and evolve. In this manuscript, we introduce the concept of epigenetic intelligence, clarifying the synergy between discrete, 'symbolic' epigenetic switches (e.g. gene-specific DNA methylation) and the more 'subsymbolic', distributed features of the genome (e.g. repetitive elements methylation). This approach appears to be novel, as existing literature has not explicitly framed epigenetic regulation within a neuro-symbolic artificial intelligence perspective.</p>\",\"PeriodicalId\":11774,\"journal\":{\"name\":\"Environmental Epigenetics\",\"volume\":\"11 1\",\"pages\":\"dvaf022\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Epigenetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/eep/dvaf022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epigenetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/eep/dvaf022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,表观遗传机制被认为是一组调节基因表达的开关,它也可能是一个具有符号和亚符号特征的信息处理系统。在这个框架中,基因特异性DNA甲基化和其他局部表观遗传标记作为象征性的“开/关”信号,而重复和非编码DNA元件形成对环境刺激的概率分布反应的底物。这种混合视角与机器学习方法相似,其中符号表示与子符号方法(例如神经网络)相结合,以实现强大的学习和适应。在这里,我们提出表观遗传调控整合了这两个维度(即符号控制和亚符号冗余),使细胞能够适应复杂的环境挑战,保持对过去暴露的遗传记忆,并进行进化。在这篇论文中,我们介绍了表观遗传智能的概念,阐明了离散的、“象征性的”表观遗传开关(如基因特异性DNA甲基化)和更多的“亚象征性的”、基因组分布特征(如重复元件甲基化)之间的协同作用。这种方法似乎是新颖的,因为现有的文献并没有明确地从神经符号人工智能的角度来构建表观遗传调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

When cells think: a neuro-symbolic view of epigenetic regulation.

When cells think: a neuro-symbolic view of epigenetic regulation.

Traditionally viewed as a set of switches regulating gene expression, epigenetic mechanisms may also operate as an information-processing system with symbolic and subsymbolic features. In this framework, gene-specific DNA methylation and other localized epigenetic marks act as symbolic 'on/off' signals, while repetitive and noncoding DNA elements form a substrate for probabilistic, distributed responses to environmental stimuli. This hybrid perspective parallels machine-learning approaches, where symbolic representations are combined with subsymbolic methods (e.g. neural networks) to achieve robust learning and adaptation. Here, we propose that epigenetic regulation integrates these two dimensions (i.e. symbolic control and subsymbolic redundancy) to enable cells to adapt to complex environmental challenges, maintain heritable memory of past exposures, and evolve. In this manuscript, we introduce the concept of epigenetic intelligence, clarifying the synergy between discrete, 'symbolic' epigenetic switches (e.g. gene-specific DNA methylation) and the more 'subsymbolic', distributed features of the genome (e.g. repetitive elements methylation). This approach appears to be novel, as existing literature has not explicitly framed epigenetic regulation within a neuro-symbolic artificial intelligence perspective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Epigenetics
Environmental Epigenetics GENETICS & HEREDITY-
CiteScore
6.50
自引率
5.30%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信