带水忆阻器的回声状态和带通网络:带漏基板的漏储层计算。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0273574
T M Kamsma, J J Teijema, R van Roij, C Spitoni
{"title":"带水忆阻器的回声状态和带通网络:带漏基板的漏储层计算。","authors":"T M Kamsma, J J Teijema, R van Roij, C Spitoni","doi":"10.1063/5.0273574","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent Neural Networks (RNNs) are extensively employed for processing sequential data such as time series. Reservoir computing (RC) has drawn attention as an RNN framework due to its fixed network that does not require training, making it an attractive platform for hardware-based machine learning. We establish an explicit correspondence between the well-established mathematical RC implementations of echo state networks and band-pass networks with leaky integrator nodes on the one hand and a physical circuit containing iontronic simple volatile memristors on the other. These aqueous iontronic devices employ ion transport through water as signal carriers and feature a voltage-dependent (memory) conductance. The activation function and the dynamics of the leaky integrator nodes naturally materialize as the (dynamic) conductance properties of iontronic memristors, while a simple fixed local current-to-voltage update rule at the memristor terminals facilitates the relevant matrix coupling between nodes. We process various time series, including pressure data from simulated airways during breathing that can be directly fed into the network due to the intrinsic responsiveness of iontronic devices to applied pressures. We accomplish this by employing established physical equations of motion of iontronic memristors for the internal dynamics of the circuit.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Echo state and band-pass networks with aqueous memristors: Leaky reservoir computing with a leaky substrate.\",\"authors\":\"T M Kamsma, J J Teijema, R van Roij, C Spitoni\",\"doi\":\"10.1063/5.0273574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recurrent Neural Networks (RNNs) are extensively employed for processing sequential data such as time series. Reservoir computing (RC) has drawn attention as an RNN framework due to its fixed network that does not require training, making it an attractive platform for hardware-based machine learning. We establish an explicit correspondence between the well-established mathematical RC implementations of echo state networks and band-pass networks with leaky integrator nodes on the one hand and a physical circuit containing iontronic simple volatile memristors on the other. These aqueous iontronic devices employ ion transport through water as signal carriers and feature a voltage-dependent (memory) conductance. The activation function and the dynamics of the leaky integrator nodes naturally materialize as the (dynamic) conductance properties of iontronic memristors, while a simple fixed local current-to-voltage update rule at the memristor terminals facilitates the relevant matrix coupling between nodes. We process various time series, including pressure data from simulated airways during breathing that can be directly fed into the network due to the intrinsic responsiveness of iontronic devices to applied pressures. We accomplish this by employing established physical equations of motion of iontronic memristors for the internal dynamics of the circuit.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0273574\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0273574","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

递归神经网络(RNNs)广泛用于处理时序数据,如时间序列。水库计算(RC)作为一种RNN框架,由于其不需要训练的固定网络而受到关注,使其成为基于硬件的机器学习的有吸引力的平台。我们建立了一种明确的对应关系,一方面是回声状态网络和带通网络的数学RC实现,一方面是泄漏积分器节点,另一方面是包含离子电子简单易失性忆阻器的物理电路。这些水离子电子器件采用离子通过水作为信号载体,并具有电压依赖性(记忆)电导。漏积分器节点的激活函数和动态特性自然地体现为离子电子忆阻器的(动态)电导特性,而忆阻器终端上简单固定的局部电流电压更新规则有助于节点之间的相关矩阵耦合。我们处理各种时间序列,包括呼吸过程中模拟气道的压力数据,由于离子电子设备对施加压力的内在响应,这些数据可以直接输入网络。我们通过采用已建立的电子忆阻器运动的物理方程来实现电路的内部动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Echo state and band-pass networks with aqueous memristors: Leaky reservoir computing with a leaky substrate.

Recurrent Neural Networks (RNNs) are extensively employed for processing sequential data such as time series. Reservoir computing (RC) has drawn attention as an RNN framework due to its fixed network that does not require training, making it an attractive platform for hardware-based machine learning. We establish an explicit correspondence between the well-established mathematical RC implementations of echo state networks and band-pass networks with leaky integrator nodes on the one hand and a physical circuit containing iontronic simple volatile memristors on the other. These aqueous iontronic devices employ ion transport through water as signal carriers and feature a voltage-dependent (memory) conductance. The activation function and the dynamics of the leaky integrator nodes naturally materialize as the (dynamic) conductance properties of iontronic memristors, while a simple fixed local current-to-voltage update rule at the memristor terminals facilitates the relevant matrix coupling between nodes. We process various time series, including pressure data from simulated airways during breathing that can be directly fed into the network due to the intrinsic responsiveness of iontronic devices to applied pressures. We accomplish this by employing established physical equations of motion of iontronic memristors for the internal dynamics of the circuit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信