{"title":"枯草芽孢杆菌DegQ的四聚体结构及其与DegS-DegU双组分体系的预测相互作用。","authors":"Zui Fujimoto, Naomi Kishine, Kengo Saitou, Keitarou Kimura","doi":"10.1107/S2053230X25007903","DOIUrl":null,"url":null,"abstract":"<p><i>Bacillus subtilis</i> DegQ is a 46-amino-acid regulatory protein involved in the DegS–DegU two-component system. DegQ promotes the phosphorylation of DegU by DegS, switching the function of DegU from competence to the induction of poly-γ-glutamate production. To elucidate its structural role, we determined the crystal structures of wild-type DegQ and its mutant DegQS25L. Each DegQ monomer folds into a single α-helix, and four monomers assemble into a tetramer characterized by a four-helix coiled-coil structure. Within the tetramer, two adjacent helices are oriented in the same direction, while the other two are oriented oppositely, forming a pseudo-twofold symmetric arrangement. The mutant form displays disrupted symmetry due to altered helix packing, which is caused by shifts in the coiled-coil heptad register induced by the mutation. Structural predictions using <i>AlphaFold</i>3 suggest that DegQ likely binds to the N-terminal helix bundle of DegS, either as a dimer or as individual monomers. These findings provide structural insight into DegQ oligomerization and its potential role in modulating DegS autophosphorylation and DegU binding.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 10","pages":"425-433"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tetrameric structure of Bacillus subtilis DegQ and its predicted interaction with the DegS–DegU two-component system\",\"authors\":\"Zui Fujimoto, Naomi Kishine, Kengo Saitou, Keitarou Kimura\",\"doi\":\"10.1107/S2053230X25007903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Bacillus subtilis</i> DegQ is a 46-amino-acid regulatory protein involved in the DegS–DegU two-component system. DegQ promotes the phosphorylation of DegU by DegS, switching the function of DegU from competence to the induction of poly-γ-glutamate production. To elucidate its structural role, we determined the crystal structures of wild-type DegQ and its mutant DegQS25L. Each DegQ monomer folds into a single α-helix, and four monomers assemble into a tetramer characterized by a four-helix coiled-coil structure. Within the tetramer, two adjacent helices are oriented in the same direction, while the other two are oriented oppositely, forming a pseudo-twofold symmetric arrangement. The mutant form displays disrupted symmetry due to altered helix packing, which is caused by shifts in the coiled-coil heptad register induced by the mutation. Structural predictions using <i>AlphaFold</i>3 suggest that DegQ likely binds to the N-terminal helix bundle of DegS, either as a dimer or as individual monomers. These findings provide structural insight into DegQ oligomerization and its potential role in modulating DegS autophosphorylation and DegU binding.</p>\",\"PeriodicalId\":7029,\"journal\":{\"name\":\"Acta crystallographica. Section F, Structural biology communications\",\"volume\":\"81 10\",\"pages\":\"425-433\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section F, Structural biology communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25007903\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25007903","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Tetrameric structure of Bacillus subtilis DegQ and its predicted interaction with the DegS–DegU two-component system
Bacillus subtilis DegQ is a 46-amino-acid regulatory protein involved in the DegS–DegU two-component system. DegQ promotes the phosphorylation of DegU by DegS, switching the function of DegU from competence to the induction of poly-γ-glutamate production. To elucidate its structural role, we determined the crystal structures of wild-type DegQ and its mutant DegQS25L. Each DegQ monomer folds into a single α-helix, and four monomers assemble into a tetramer characterized by a four-helix coiled-coil structure. Within the tetramer, two adjacent helices are oriented in the same direction, while the other two are oriented oppositely, forming a pseudo-twofold symmetric arrangement. The mutant form displays disrupted symmetry due to altered helix packing, which is caused by shifts in the coiled-coil heptad register induced by the mutation. Structural predictions using AlphaFold3 suggest that DegQ likely binds to the N-terminal helix bundle of DegS, either as a dimer or as individual monomers. These findings provide structural insight into DegQ oligomerization and its potential role in modulating DegS autophosphorylation and DegU binding.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.