辐射伏特效应同位素电池的研究进展

IF 12
Qiannan Zhao, Zhenxuan Liu, Kai Huo, Wenguang Zhang, Bo Xiao, Yuchen Xiong, Yihuai Huang, Changkai Huang, Yao Luo, Yan Liu, Li Wang, Abdul Basit, Guibin Shen, Yubo Luo, Qinghui Jiang, Xin Li, Junyou Yang
{"title":"辐射伏特效应同位素电池的研究进展","authors":"Qiannan Zhao,&nbsp;Zhenxuan Liu,&nbsp;Kai Huo,&nbsp;Wenguang Zhang,&nbsp;Bo Xiao,&nbsp;Yuchen Xiong,&nbsp;Yihuai Huang,&nbsp;Changkai Huang,&nbsp;Yao Luo,&nbsp;Yan Liu,&nbsp;Li Wang,&nbsp;Abdul Basit,&nbsp;Guibin Shen,&nbsp;Yubo Luo,&nbsp;Qinghui Jiang,&nbsp;Xin Li,&nbsp;Junyou Yang","doi":"10.1002/cnl2.70039","DOIUrl":null,"url":null,"abstract":"<p>Radioisotope batteries, as a highly efficient and long-lasting micro-energy conversion technology, demonstrate unique advantages in fields, such as aerospace, medical devices, and power supply in extreme environments. This paper provides a systematic review of the research progress in radioisotope batteries, with a focus on analyzing the performance of different semiconductor materials in terms of energy conversion efficiency, radiation resistance, and application potential. The content covers optimization strategies and application prospects for traditional and wide/ultra-wide bandgap semiconductor materials (including silicon, gallium arsenide, silicon carbide, gallium nitride, titanium dioxide, zinc oxide, diamond, gallium oxide, and perovskite, among others). It also identifies current technical challenges, including low energy conversion efficiency, accelerated performance degradation of semiconductor materials under irradiation, and challenges related to the safe management of radioisotope. Finally, the article outlines future research directions, emphasizing the promotion of practical applications of radioisotope batteries through material innovation, structural design, and process optimization, with the aim of advancing academic innovation and engineering practices to address extreme environmental conditions and long-term energy demands.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70039","citationCount":"0","resultStr":"{\"title\":\"Research Progress on Radiation Volt-Effect Isotope Cells\",\"authors\":\"Qiannan Zhao,&nbsp;Zhenxuan Liu,&nbsp;Kai Huo,&nbsp;Wenguang Zhang,&nbsp;Bo Xiao,&nbsp;Yuchen Xiong,&nbsp;Yihuai Huang,&nbsp;Changkai Huang,&nbsp;Yao Luo,&nbsp;Yan Liu,&nbsp;Li Wang,&nbsp;Abdul Basit,&nbsp;Guibin Shen,&nbsp;Yubo Luo,&nbsp;Qinghui Jiang,&nbsp;Xin Li,&nbsp;Junyou Yang\",\"doi\":\"10.1002/cnl2.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radioisotope batteries, as a highly efficient and long-lasting micro-energy conversion technology, demonstrate unique advantages in fields, such as aerospace, medical devices, and power supply in extreme environments. This paper provides a systematic review of the research progress in radioisotope batteries, with a focus on analyzing the performance of different semiconductor materials in terms of energy conversion efficiency, radiation resistance, and application potential. The content covers optimization strategies and application prospects for traditional and wide/ultra-wide bandgap semiconductor materials (including silicon, gallium arsenide, silicon carbide, gallium nitride, titanium dioxide, zinc oxide, diamond, gallium oxide, and perovskite, among others). It also identifies current technical challenges, including low energy conversion efficiency, accelerated performance degradation of semiconductor materials under irradiation, and challenges related to the safe management of radioisotope. Finally, the article outlines future research directions, emphasizing the promotion of practical applications of radioisotope batteries through material innovation, structural design, and process optimization, with the aim of advancing academic innovation and engineering practices to address extreme environmental conditions and long-term energy demands.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射性同位素电池作为一种高效、持久的微能量转换技术,在航空航天、医疗设备、极端环境供电等领域具有独特的优势。本文系统综述了放射性同位素电池的研究进展,重点分析了不同半导体材料在能量转换效率、抗辐射性能和应用潜力等方面的性能。内容涵盖了传统和宽/超宽带隙半导体材料(包括硅、砷化镓、碳化硅、氮化镓、二氧化钛、氧化锌、金刚石、氧化镓和钙钛矿等)的优化策略和应用前景。它还确定了当前的技术挑战,包括低能量转换效率、辐照下半导体材料性能加速退化以及与放射性同位素安全管理有关的挑战。最后,文章概述了未来的研究方向,强调通过材料创新、结构设计和工艺优化促进放射性同位素电池的实际应用,推动学术创新和工程实践,以解决极端环境条件和长期能源需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research Progress on Radiation Volt-Effect Isotope Cells

Research Progress on Radiation Volt-Effect Isotope Cells

Radioisotope batteries, as a highly efficient and long-lasting micro-energy conversion technology, demonstrate unique advantages in fields, such as aerospace, medical devices, and power supply in extreme environments. This paper provides a systematic review of the research progress in radioisotope batteries, with a focus on analyzing the performance of different semiconductor materials in terms of energy conversion efficiency, radiation resistance, and application potential. The content covers optimization strategies and application prospects for traditional and wide/ultra-wide bandgap semiconductor materials (including silicon, gallium arsenide, silicon carbide, gallium nitride, titanium dioxide, zinc oxide, diamond, gallium oxide, and perovskite, among others). It also identifies current technical challenges, including low energy conversion efficiency, accelerated performance degradation of semiconductor materials under irradiation, and challenges related to the safe management of radioisotope. Finally, the article outlines future research directions, emphasizing the promotion of practical applications of radioisotope batteries through material innovation, structural design, and process optimization, with the aim of advancing academic innovation and engineering practices to address extreme environmental conditions and long-term energy demands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信