Qiannan Zhao, Zhenxuan Liu, Kai Huo, Wenguang Zhang, Bo Xiao, Yuchen Xiong, Yihuai Huang, Changkai Huang, Yao Luo, Yan Liu, Li Wang, Abdul Basit, Guibin Shen, Yubo Luo, Qinghui Jiang, Xin Li, Junyou Yang
{"title":"辐射伏特效应同位素电池的研究进展","authors":"Qiannan Zhao, Zhenxuan Liu, Kai Huo, Wenguang Zhang, Bo Xiao, Yuchen Xiong, Yihuai Huang, Changkai Huang, Yao Luo, Yan Liu, Li Wang, Abdul Basit, Guibin Shen, Yubo Luo, Qinghui Jiang, Xin Li, Junyou Yang","doi":"10.1002/cnl2.70039","DOIUrl":null,"url":null,"abstract":"<p>Radioisotope batteries, as a highly efficient and long-lasting micro-energy conversion technology, demonstrate unique advantages in fields, such as aerospace, medical devices, and power supply in extreme environments. This paper provides a systematic review of the research progress in radioisotope batteries, with a focus on analyzing the performance of different semiconductor materials in terms of energy conversion efficiency, radiation resistance, and application potential. The content covers optimization strategies and application prospects for traditional and wide/ultra-wide bandgap semiconductor materials (including silicon, gallium arsenide, silicon carbide, gallium nitride, titanium dioxide, zinc oxide, diamond, gallium oxide, and perovskite, among others). It also identifies current technical challenges, including low energy conversion efficiency, accelerated performance degradation of semiconductor materials under irradiation, and challenges related to the safe management of radioisotope. Finally, the article outlines future research directions, emphasizing the promotion of practical applications of radioisotope batteries through material innovation, structural design, and process optimization, with the aim of advancing academic innovation and engineering practices to address extreme environmental conditions and long-term energy demands.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70039","citationCount":"0","resultStr":"{\"title\":\"Research Progress on Radiation Volt-Effect Isotope Cells\",\"authors\":\"Qiannan Zhao, Zhenxuan Liu, Kai Huo, Wenguang Zhang, Bo Xiao, Yuchen Xiong, Yihuai Huang, Changkai Huang, Yao Luo, Yan Liu, Li Wang, Abdul Basit, Guibin Shen, Yubo Luo, Qinghui Jiang, Xin Li, Junyou Yang\",\"doi\":\"10.1002/cnl2.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radioisotope batteries, as a highly efficient and long-lasting micro-energy conversion technology, demonstrate unique advantages in fields, such as aerospace, medical devices, and power supply in extreme environments. This paper provides a systematic review of the research progress in radioisotope batteries, with a focus on analyzing the performance of different semiconductor materials in terms of energy conversion efficiency, radiation resistance, and application potential. The content covers optimization strategies and application prospects for traditional and wide/ultra-wide bandgap semiconductor materials (including silicon, gallium arsenide, silicon carbide, gallium nitride, titanium dioxide, zinc oxide, diamond, gallium oxide, and perovskite, among others). It also identifies current technical challenges, including low energy conversion efficiency, accelerated performance degradation of semiconductor materials under irradiation, and challenges related to the safe management of radioisotope. Finally, the article outlines future research directions, emphasizing the promotion of practical applications of radioisotope batteries through material innovation, structural design, and process optimization, with the aim of advancing academic innovation and engineering practices to address extreme environmental conditions and long-term energy demands.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research Progress on Radiation Volt-Effect Isotope Cells
Radioisotope batteries, as a highly efficient and long-lasting micro-energy conversion technology, demonstrate unique advantages in fields, such as aerospace, medical devices, and power supply in extreme environments. This paper provides a systematic review of the research progress in radioisotope batteries, with a focus on analyzing the performance of different semiconductor materials in terms of energy conversion efficiency, radiation resistance, and application potential. The content covers optimization strategies and application prospects for traditional and wide/ultra-wide bandgap semiconductor materials (including silicon, gallium arsenide, silicon carbide, gallium nitride, titanium dioxide, zinc oxide, diamond, gallium oxide, and perovskite, among others). It also identifies current technical challenges, including low energy conversion efficiency, accelerated performance degradation of semiconductor materials under irradiation, and challenges related to the safe management of radioisotope. Finally, the article outlines future research directions, emphasizing the promotion of practical applications of radioisotope batteries through material innovation, structural design, and process optimization, with the aim of advancing academic innovation and engineering practices to address extreme environmental conditions and long-term energy demands.