Edgar López-López, José L. Medina-Franco, Eric Salinas-Arellano, Karen J. Ardila-Fierro, Julio C. Pardo-Novoa, Rosa E. del Río, Carlos M. Cerda-García-Rojas
{"title":"微管-微管系统的共价可调节抑制剂:Cacalol的机制","authors":"Edgar López-López, José L. Medina-Franco, Eric Salinas-Arellano, Karen J. Ardila-Fierro, Julio C. Pardo-Novoa, Rosa E. del Río, Carlos M. Cerda-García-Rojas","doi":"10.1111/cbdd.70165","DOIUrl":null,"url":null,"abstract":"<p>Inhibitors of the tubulin-microtubule system are part of an effective strategy to treat different kinds of cancer, whose research has allowed scientists to discover and develop new and more selective molecules. Cacalol (<b>1</b>) is a natural product with anti-cancer activity and documented selectivity in breast cells, but with an undescribed molecular mechanism associated with these properties. The main objective of this work is to provide evidence that helps to explain the inhibitory and selective activity reported for cacalol (<b>1</b>) against cancer cell lines and to expand the knowledge about the mechanism of action involved in it. Cacalol derivatives were studied using reactivity approaches, tubulin polymerization assays, mass spectrometry, and molecular modeling techniques to decode the inhibitory binding mechanism. This work demonstrates that an oxidated form of cacalol, the methylenecyclohexadienone <b>2</b>, is generated in highly oxidant conditions, thus emulating the environment present in cancer cells. This species (<b>2</b>) is responsible for the inhibition of tubulin polymerization by promoting an irreversible binding interaction with the Cys347 in α-tubulin.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"106 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.70165","citationCount":"0","resultStr":"{\"title\":\"A Covalent and Modulable Inhibitor of the Tubulin-Microtubule System: Insights Into the Mechanism of Cacalol\",\"authors\":\"Edgar López-López, José L. Medina-Franco, Eric Salinas-Arellano, Karen J. Ardila-Fierro, Julio C. Pardo-Novoa, Rosa E. del Río, Carlos M. Cerda-García-Rojas\",\"doi\":\"10.1111/cbdd.70165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inhibitors of the tubulin-microtubule system are part of an effective strategy to treat different kinds of cancer, whose research has allowed scientists to discover and develop new and more selective molecules. Cacalol (<b>1</b>) is a natural product with anti-cancer activity and documented selectivity in breast cells, but with an undescribed molecular mechanism associated with these properties. The main objective of this work is to provide evidence that helps to explain the inhibitory and selective activity reported for cacalol (<b>1</b>) against cancer cell lines and to expand the knowledge about the mechanism of action involved in it. Cacalol derivatives were studied using reactivity approaches, tubulin polymerization assays, mass spectrometry, and molecular modeling techniques to decode the inhibitory binding mechanism. This work demonstrates that an oxidated form of cacalol, the methylenecyclohexadienone <b>2</b>, is generated in highly oxidant conditions, thus emulating the environment present in cancer cells. This species (<b>2</b>) is responsible for the inhibition of tubulin polymerization by promoting an irreversible binding interaction with the Cys347 in α-tubulin.</p>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"106 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.70165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70165\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70165","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Covalent and Modulable Inhibitor of the Tubulin-Microtubule System: Insights Into the Mechanism of Cacalol
Inhibitors of the tubulin-microtubule system are part of an effective strategy to treat different kinds of cancer, whose research has allowed scientists to discover and develop new and more selective molecules. Cacalol (1) is a natural product with anti-cancer activity and documented selectivity in breast cells, but with an undescribed molecular mechanism associated with these properties. The main objective of this work is to provide evidence that helps to explain the inhibitory and selective activity reported for cacalol (1) against cancer cell lines and to expand the knowledge about the mechanism of action involved in it. Cacalol derivatives were studied using reactivity approaches, tubulin polymerization assays, mass spectrometry, and molecular modeling techniques to decode the inhibitory binding mechanism. This work demonstrates that an oxidated form of cacalol, the methylenecyclohexadienone 2, is generated in highly oxidant conditions, thus emulating the environment present in cancer cells. This species (2) is responsible for the inhibition of tubulin polymerization by promoting an irreversible binding interaction with the Cys347 in α-tubulin.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.