河流中溶解有机物组成输出的时间变异性

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Most Shirina Begum, Meredith Kadjeski, Christina Fasching, Marguerite A. Xenopoulos
{"title":"河流中溶解有机物组成输出的时间变异性","authors":"Most Shirina Begum,&nbsp;Meredith Kadjeski,&nbsp;Christina Fasching,&nbsp;Marguerite A. Xenopoulos","doi":"10.1007/s10533-025-01270-3","DOIUrl":null,"url":null,"abstract":"<div><p>Export of dissolved organic carbon (DOC) from freshwater systems has been the focus of many studies owing to its pivotal role in regulating global carbon fluxes and ecosystem function. Both the flux and composition of dissolved organic matter (DOM) are critical for understanding its ecological impact, as similar compositions can have vastly different consequences depending on the magnitude of input and hydrological context. However, very little data exists on the composition of DOM export fluxes to downstream ecosystems. Here we investigate the interaction of water temperature and discharge on DOC and DOM composition export fluxes in two streams draining contrasting watersheds (agriculture versus forested) in southern Ontario, Canada across seasons. Using Generalized Additive Models, we observed that both stream discharge and water temperature significantly affected DOM composition, and the proportion of terrestrial humic-like DOM exhibited strong positive relationship with discharge. Although DOC loads were comparable between the two streams, the export loads and fluxes of DOM composition (in terms of fluorescent loads and fluxes) differed significantly. These patterns of DOM composition fluxes in both streams remained consistent across seasons, suggesting that watershed characteristics and nutrient availability primarily govern DOM dynamics and export, while seasonal drivers such as discharge and temperature further modulate these patterns. Export loads and fluxes of DOM components were higher in spring and winter months compared to summer and autumn in both streams, while fluxes also increased at medium (Q10-Q90) and high flow (&gt; Q10) at a variable extent in the contrasting streams. Temperature and discharge regulated export of DOM can be further affected with changing climate and increasing frequency of extreme events and alter the processing and delivery of DOM to downstream ecosystems.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01270-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Temporal variability in dissolved organic matter composition export in streams\",\"authors\":\"Most Shirina Begum,&nbsp;Meredith Kadjeski,&nbsp;Christina Fasching,&nbsp;Marguerite A. Xenopoulos\",\"doi\":\"10.1007/s10533-025-01270-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Export of dissolved organic carbon (DOC) from freshwater systems has been the focus of many studies owing to its pivotal role in regulating global carbon fluxes and ecosystem function. Both the flux and composition of dissolved organic matter (DOM) are critical for understanding its ecological impact, as similar compositions can have vastly different consequences depending on the magnitude of input and hydrological context. However, very little data exists on the composition of DOM export fluxes to downstream ecosystems. Here we investigate the interaction of water temperature and discharge on DOC and DOM composition export fluxes in two streams draining contrasting watersheds (agriculture versus forested) in southern Ontario, Canada across seasons. Using Generalized Additive Models, we observed that both stream discharge and water temperature significantly affected DOM composition, and the proportion of terrestrial humic-like DOM exhibited strong positive relationship with discharge. Although DOC loads were comparable between the two streams, the export loads and fluxes of DOM composition (in terms of fluorescent loads and fluxes) differed significantly. These patterns of DOM composition fluxes in both streams remained consistent across seasons, suggesting that watershed characteristics and nutrient availability primarily govern DOM dynamics and export, while seasonal drivers such as discharge and temperature further modulate these patterns. Export loads and fluxes of DOM components were higher in spring and winter months compared to summer and autumn in both streams, while fluxes also increased at medium (Q10-Q90) and high flow (&gt; Q10) at a variable extent in the contrasting streams. Temperature and discharge regulated export of DOM can be further affected with changing climate and increasing frequency of extreme events and alter the processing and delivery of DOM to downstream ecosystems.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":\"168 5\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-025-01270-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-025-01270-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01270-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

淡水系统中溶解有机碳(DOC)的输出由于其在调节全球碳通量和生态系统功能方面的关键作用而成为许多研究的焦点。溶解有机物(DOM)的通量和组成对于理解其生态影响至关重要,因为根据输入量和水文环境的不同,相似的组成可能产生截然不同的后果。然而,关于向下游生态系统输出DOM通量组成的数据很少。在这里,我们研究了水温和排放对加拿大安大略省南部不同季节不同流域(农业流域和森林流域)两条河流DOC和DOM成分输出通量的相互作用。利用广义加性模型研究发现,河流流量和水温对DOM组成均有显著影响,类腐殖土DOM的比例与流量呈显著正相关。虽然DOC负载在两种流之间具有可比性,但DOM组成的输出负载和通量(在荧光负载和通量方面)存在显著差异。这两种河流中DOM组成通量的模式在不同季节保持一致,表明流域特征和养分有效性主要控制DOM的动态和输出,而流量和温度等季节性驱动因素进一步调节这些模式。两河春冬季DOM组分出口负荷和通量均高于夏秋两季,中流量(Q10- q90)和大流量(> Q10)通量也有不同程度的增加。气候变化和极端事件频率的增加会进一步影响温度和排放调节的DOM出口,并改变DOM对下游生态系统的加工和输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal variability in dissolved organic matter composition export in streams

Export of dissolved organic carbon (DOC) from freshwater systems has been the focus of many studies owing to its pivotal role in regulating global carbon fluxes and ecosystem function. Both the flux and composition of dissolved organic matter (DOM) are critical for understanding its ecological impact, as similar compositions can have vastly different consequences depending on the magnitude of input and hydrological context. However, very little data exists on the composition of DOM export fluxes to downstream ecosystems. Here we investigate the interaction of water temperature and discharge on DOC and DOM composition export fluxes in two streams draining contrasting watersheds (agriculture versus forested) in southern Ontario, Canada across seasons. Using Generalized Additive Models, we observed that both stream discharge and water temperature significantly affected DOM composition, and the proportion of terrestrial humic-like DOM exhibited strong positive relationship with discharge. Although DOC loads were comparable between the two streams, the export loads and fluxes of DOM composition (in terms of fluorescent loads and fluxes) differed significantly. These patterns of DOM composition fluxes in both streams remained consistent across seasons, suggesting that watershed characteristics and nutrient availability primarily govern DOM dynamics and export, while seasonal drivers such as discharge and temperature further modulate these patterns. Export loads and fluxes of DOM components were higher in spring and winter months compared to summer and autumn in both streams, while fluxes also increased at medium (Q10-Q90) and high flow (> Q10) at a variable extent in the contrasting streams. Temperature and discharge regulated export of DOM can be further affected with changing climate and increasing frequency of extreme events and alter the processing and delivery of DOM to downstream ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信