{"title":"\\(L^2\\)时变系数一维波动方程的-有界性","authors":"Ryo Ikehata","doi":"10.1007/s00013-025-02162-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the <span>\\(L^{2}\\)</span>-boundedness of the solution of the Cauchy problem for a wave equation with time-dependent wave speeds. We treat it in the one-dimensional Euclidean space <span>\\(\\textbf{R}\\)</span>. We adopt a simple multiplier method by using a special property of the one dimensional space.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 4","pages":"445 - 453"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02162-6.pdf","citationCount":"0","resultStr":"{\"title\":\"\\\\(L^2\\\\)-boundedness for 1-D wave equations with time variable coefficients\",\"authors\":\"Ryo Ikehata\",\"doi\":\"10.1007/s00013-025-02162-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the <span>\\\\(L^{2}\\\\)</span>-boundedness of the solution of the Cauchy problem for a wave equation with time-dependent wave speeds. We treat it in the one-dimensional Euclidean space <span>\\\\(\\\\textbf{R}\\\\)</span>. We adopt a simple multiplier method by using a special property of the one dimensional space.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 4\",\"pages\":\"445 - 453\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-025-02162-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02162-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02162-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
\(L^2\)-boundedness for 1-D wave equations with time variable coefficients
We consider the \(L^{2}\)-boundedness of the solution of the Cauchy problem for a wave equation with time-dependent wave speeds. We treat it in the one-dimensional Euclidean space \(\textbf{R}\). We adopt a simple multiplier method by using a special property of the one dimensional space.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.