正辛舒尔函数的行列式

IF 0.7 4区 数学 Q4 MATHEMATICS, APPLIED
Nishu Kumari
{"title":"正辛舒尔函数的行列式","authors":"Nishu Kumari","doi":"10.1007/s00026-024-00718-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a new determinantal formula for the characters of irreducible representations of orthosymplectic Lie superalgebras analogous to the formula developed by Moens and Jeugt (J Algebraic Combin 17(3):283–307, 2003) for general linear Lie superalgebras. Our proof uses the Jacobi–Trudi type formulas for orthosymplectic characters. As a consequence, we show that the odd symplectic characters introduced by Proctor (Invent Math 92(2):307–332, 1988) are the same as the orthosymplectic characters with some specialized indeterminates. We also give a generalization of an odd symplectic character identity due to Brent, Krattenthaler and Warnaar (J Combin Theory Ser A 144:80–138, 2016).</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"29 3","pages":"719 - 741"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Determinantal Formula for Orthosymplectic Schur Functions\",\"authors\":\"Nishu Kumari\",\"doi\":\"10.1007/s00026-024-00718-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a new determinantal formula for the characters of irreducible representations of orthosymplectic Lie superalgebras analogous to the formula developed by Moens and Jeugt (J Algebraic Combin 17(3):283–307, 2003) for general linear Lie superalgebras. Our proof uses the Jacobi–Trudi type formulas for orthosymplectic characters. As a consequence, we show that the odd symplectic characters introduced by Proctor (Invent Math 92(2):307–332, 1988) are the same as the orthosymplectic characters with some specialized indeterminates. We also give a generalization of an odd symplectic character identity due to Brent, Krattenthaler and Warnaar (J Combin Theory Ser A 144:80–138, 2016).</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"29 3\",\"pages\":\"719 - 741\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-024-00718-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-024-00718-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个新的正辛李超代数不可约表示性质的行列式,类似于Moens和Jeugt (J代数组合17(3):283 - 307,2003)的一般线性李超代数的行列式。我们的证明使用Jacobi-Trudi型公式来证明正辛特征。因此,我们证明了由Proctor (Invent Math 92(2): 307-332, 1988)引入的奇辛字符与具有某些特殊不定数的正辛字符相同。我们还对Brent, Krattenthaler和Warnaar的奇辛特征恒等式进行了推广(J组合理论学报,144:80-138,2016)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Determinantal Formula for Orthosymplectic Schur Functions

A Determinantal Formula for Orthosymplectic Schur Functions

A Determinantal Formula for Orthosymplectic Schur Functions

We prove a new determinantal formula for the characters of irreducible representations of orthosymplectic Lie superalgebras analogous to the formula developed by Moens and Jeugt (J Algebraic Combin 17(3):283–307, 2003) for general linear Lie superalgebras. Our proof uses the Jacobi–Trudi type formulas for orthosymplectic characters. As a consequence, we show that the odd symplectic characters introduced by Proctor (Invent Math 92(2):307–332, 1988) are the same as the orthosymplectic characters with some specialized indeterminates. We also give a generalization of an odd symplectic character identity due to Brent, Krattenthaler and Warnaar (J Combin Theory Ser A 144:80–138, 2016).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信