广义baumslag -孤子群普遍等价于树群

IF 0.6 3区 数学 Q4 LOGIC
F. A. Dudkin
{"title":"广义baumslag -孤子群普遍等价于树群","authors":"F. A. Dudkin","doi":"10.1007/s10469-025-09790-5","DOIUrl":null,"url":null,"abstract":"<p>A finitely generated group that acts on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group (<i>GBS</i> group). Every <i>GBS</i> group is the fundamental group <i>π</i><sub>1</sub>(𝔸) of a suitable labeled graph 𝔸. If 𝔸 is a labeled tree, then we call <i>π</i><sub>1</sub>(𝔸) a tree GBS group. It is known that <i>GBS</i> groups isomorphic to tree groups are themselves tree groups. It is shown that <i>GBS</i> groups universally equivalent to tree groups do not have to be tree groups. Moreover, we give a description of all <i>GBS</i> groups that are universally equivalent to tree groups.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"63 4","pages":"249 - 257"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Baumslag–Solitar Groups Universally Equivalent to Tree Groups\",\"authors\":\"F. A. Dudkin\",\"doi\":\"10.1007/s10469-025-09790-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A finitely generated group that acts on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group (<i>GBS</i> group). Every <i>GBS</i> group is the fundamental group <i>π</i><sub>1</sub>(𝔸) of a suitable labeled graph 𝔸. If 𝔸 is a labeled tree, then we call <i>π</i><sub>1</sub>(𝔸) a tree GBS group. It is known that <i>GBS</i> groups isomorphic to tree groups are themselves tree groups. It is shown that <i>GBS</i> groups universally equivalent to tree groups do not have to be tree groups. Moreover, we give a description of all <i>GBS</i> groups that are universally equivalent to tree groups.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"63 4\",\"pages\":\"249 - 257\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-025-09790-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-025-09790-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

作用于树上使所有顶点和边稳定子都是无限循环群的有限生成群称为广义Baumslag-Solitar群(GBS群)。每一个GBS群都是一个合适的标记图的基本群π1(如果是一个标记树,那么我们称π1()为一个GBS群树。已知与树群同构的GBS群本身就是树群。证明了与树群普遍等价的GBS群不一定是树群。此外,我们还给出了与树群普遍等价的所有GBS群的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized Baumslag–Solitar Groups Universally Equivalent to Tree Groups

Generalized Baumslag–Solitar Groups Universally Equivalent to Tree Groups

Generalized Baumslag–Solitar Groups Universally Equivalent to Tree Groups

A finitely generated group that acts on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group (GBS group). Every GBS group is the fundamental group π1(𝔸) of a suitable labeled graph 𝔸. If 𝔸 is a labeled tree, then we call π1(𝔸) a tree GBS group. It is known that GBS groups isomorphic to tree groups are themselves tree groups. It is shown that GBS groups universally equivalent to tree groups do not have to be tree groups. Moreover, we give a description of all GBS groups that are universally equivalent to tree groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信