众包恒星形成研究和参与式科学的力量

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Grace Wolf-Chase, Charles Kerton, Kathryn Devine, Nicholas Larose, Maya Coleman
{"title":"众包恒星形成研究和参与式科学的力量","authors":"Grace Wolf-Chase,&nbsp;Charles Kerton,&nbsp;Kathryn Devine,&nbsp;Nicholas Larose,&nbsp;Maya Coleman","doi":"10.1007/s10509-025-04471-2","DOIUrl":null,"url":null,"abstract":"<div><p>We review participatory science programs that have contributed to the understanding of star formation. The Milky Way Project (MWP), one of the earliest participatory science projects launched on the Zooniverse platform, produced the largest catalog of “bubbles” associated with feedback from hot young stars to date, and enabled the identification of a new class of compact star-forming regions (SFRs) known as “yellowballs” (YBs). The analysis of YBs through their infrared colors and catalog cross-matching led to discovering that YBs are compact photodissociation regions generated by intermediate- and high-mass young stellar objects embedded in clumps that range in mass from 10 - 10<sup>4</sup> M<sub>⊙</sub> and luminosity from 10 - 10<sup>6</sup> L<sub>⊙</sub>. The MIRION catalog, assembled from 6176 YBs identified by citizen scientists, increases the number of candidate intermediate-mass SFRs by nearly two orders of magnitude. Ongoing work utilizing data from the <i>Spitzer</i>, <i>Herschel</i> and <i>WISE</i> missions involves analyzing infrared color trends to predict physical properties and ages of YB environments. Methods include applying summary statistics to histograms and color-color plots as well as SED fitting. Students in introductory astronomy classes contribute toward continued efforts refining photometric measurements of YBs while learning fundamental concepts in astronomy through a classroom-based participatory science experience, the PERYSCOPE project. We also describe an initiative that engaged seminaries, family groups, and interfaith communities in a wide variety of science projects on the Zooniverse platform. This initiative produced important guidance on attracting audiences that are underserved, underrepresented, or apprehensive about science.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-025-04471-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Crowdsourcing star-formation research and the power of participatory science\",\"authors\":\"Grace Wolf-Chase,&nbsp;Charles Kerton,&nbsp;Kathryn Devine,&nbsp;Nicholas Larose,&nbsp;Maya Coleman\",\"doi\":\"10.1007/s10509-025-04471-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review participatory science programs that have contributed to the understanding of star formation. The Milky Way Project (MWP), one of the earliest participatory science projects launched on the Zooniverse platform, produced the largest catalog of “bubbles” associated with feedback from hot young stars to date, and enabled the identification of a new class of compact star-forming regions (SFRs) known as “yellowballs” (YBs). The analysis of YBs through their infrared colors and catalog cross-matching led to discovering that YBs are compact photodissociation regions generated by intermediate- and high-mass young stellar objects embedded in clumps that range in mass from 10 - 10<sup>4</sup> M<sub>⊙</sub> and luminosity from 10 - 10<sup>6</sup> L<sub>⊙</sub>. The MIRION catalog, assembled from 6176 YBs identified by citizen scientists, increases the number of candidate intermediate-mass SFRs by nearly two orders of magnitude. Ongoing work utilizing data from the <i>Spitzer</i>, <i>Herschel</i> and <i>WISE</i> missions involves analyzing infrared color trends to predict physical properties and ages of YB environments. Methods include applying summary statistics to histograms and color-color plots as well as SED fitting. Students in introductory astronomy classes contribute toward continued efforts refining photometric measurements of YBs while learning fundamental concepts in astronomy through a classroom-based participatory science experience, the PERYSCOPE project. We also describe an initiative that engaged seminaries, family groups, and interfaith communities in a wide variety of science projects on the Zooniverse platform. This initiative produced important guidance on attracting audiences that are underserved, underrepresented, or apprehensive about science.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 9\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10509-025-04471-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04471-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04471-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了参与性科学项目,这些项目有助于理解恒星的形成。银河系计划(MWP)是最早在Zooniverse平台上启动的参与性科学项目之一,它产生了迄今为止与热年轻恒星反馈相关的最大“气泡”目录,并能够识别一类新的致密恒星形成区域(SFRs),称为“黄球”(YBs)。通过对YBs的红外颜色和目录交叉匹配分析,发现YBs是由嵌入质量在10 - 104 M⊙,光度在10 - 106 L⊙的团块中的中高质量年轻恒星物体产生的紧密光解区。由公民科学家鉴定的6176个yb组成的MIRION目录将候选中等质量SFRs的数量增加了近两个数量级。利用来自斯皮策、赫歇尔和WISE任务的数据,正在进行的工作包括分析红外颜色趋势,以预测YB环境的物理性质和年龄。方法包括将汇总统计应用于直方图和彩色图以及SED拟合。天文学入门课程的学生在通过课堂参与式科学体验(PERYSCOPE项目)学习天文学基本概念的同时,为继续改进yb的光度测量做出贡献。我们还描述了一项倡议,该倡议让神学院、家庭团体和跨信仰社区参与到Zooniverse平台上的各种科学项目中。这一倡议为吸引服务不足、代表性不足或对科学感到担忧的受众提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crowdsourcing star-formation research and the power of participatory science

We review participatory science programs that have contributed to the understanding of star formation. The Milky Way Project (MWP), one of the earliest participatory science projects launched on the Zooniverse platform, produced the largest catalog of “bubbles” associated with feedback from hot young stars to date, and enabled the identification of a new class of compact star-forming regions (SFRs) known as “yellowballs” (YBs). The analysis of YBs through their infrared colors and catalog cross-matching led to discovering that YBs are compact photodissociation regions generated by intermediate- and high-mass young stellar objects embedded in clumps that range in mass from 10 - 104 M and luminosity from 10 - 106 L. The MIRION catalog, assembled from 6176 YBs identified by citizen scientists, increases the number of candidate intermediate-mass SFRs by nearly two orders of magnitude. Ongoing work utilizing data from the Spitzer, Herschel and WISE missions involves analyzing infrared color trends to predict physical properties and ages of YB environments. Methods include applying summary statistics to histograms and color-color plots as well as SED fitting. Students in introductory astronomy classes contribute toward continued efforts refining photometric measurements of YBs while learning fundamental concepts in astronomy through a classroom-based participatory science experience, the PERYSCOPE project. We also describe an initiative that engaged seminaries, family groups, and interfaith communities in a wide variety of science projects on the Zooniverse platform. This initiative produced important guidance on attracting audiences that are underserved, underrepresented, or apprehensive about science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信