边界上具有次线性非线性的logistic方程正解的边界层轮廓

IF 0.5 4区 数学 Q3 MATHEMATICS
Kenichiro Umezu
{"title":"边界上具有次线性非线性的logistic方程正解的边界层轮廓","authors":"Kenichiro Umezu","doi":"10.1007/s00013-025-02161-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the logistic elliptic equation <span>\\(-\\Delta u = u- u^{p}\\)</span> in a smooth bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^{N},\\)</span> <span>\\(N\\ge 2,\\)</span> equipped with the sublinear Neumann boundary condition <span>\\(\\frac{\\partial u}{\\partial \\nu } = \\mu u^{q}\\)</span> on <span>\\(\\partial \\Omega ,\\)</span> where <span>\\(0&lt;q&lt;1&lt;p,\\)</span> and <span>\\(\\mu \\ge 0\\)</span> is a parameter. With sub- and supersolutions and a comparison principle for the equation, we analyze the asymptotic profile of the unique positive solution for the equation as <span>\\(\\mu \\rightarrow \\infty .\\)</span></p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 4","pages":"433 - 443"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary layer profiles of positive solutions for logistic equations with sublinear nonlinearity on the boundary\",\"authors\":\"Kenichiro Umezu\",\"doi\":\"10.1007/s00013-025-02161-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the logistic elliptic equation <span>\\\\(-\\\\Delta u = u- u^{p}\\\\)</span> in a smooth bounded domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^{N},\\\\)</span> <span>\\\\(N\\\\ge 2,\\\\)</span> equipped with the sublinear Neumann boundary condition <span>\\\\(\\\\frac{\\\\partial u}{\\\\partial \\\\nu } = \\\\mu u^{q}\\\\)</span> on <span>\\\\(\\\\partial \\\\Omega ,\\\\)</span> where <span>\\\\(0&lt;q&lt;1&lt;p,\\\\)</span> and <span>\\\\(\\\\mu \\\\ge 0\\\\)</span> is a parameter. With sub- and supersolutions and a comparison principle for the equation, we analyze the asymptotic profile of the unique positive solution for the equation as <span>\\\\(\\\\mu \\\\rightarrow \\\\infty .\\\\)</span></p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 4\",\"pages\":\"433 - 443\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02161-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02161-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑logistic椭圆方程 \(-\Delta u = u- u^{p}\) 在光滑有界区域中 \(\Omega \subset {\mathbb {R}}^{N},\) \(N\ge 2,\) 具有次线性诺伊曼边界条件 \(\frac{\partial u}{\partial \nu } = \mu u^{q}\) on \(\partial \Omega ,\) 在哪里 \(0<q<1<p,\) 和 \(\mu \ge 0\) 是参数。利用该方程的子解和超解以及比较原理,我们分析了该方程的唯一正解的渐近轮廓 \(\mu \rightarrow \infty .\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boundary layer profiles of positive solutions for logistic equations with sublinear nonlinearity on the boundary

Boundary layer profiles of positive solutions for logistic equations with sublinear nonlinearity on the boundary

Boundary layer profiles of positive solutions for logistic equations with sublinear nonlinearity on the boundary

In this paper, we consider the logistic elliptic equation \(-\Delta u = u- u^{p}\) in a smooth bounded domain \(\Omega \subset {\mathbb {R}}^{N},\) \(N\ge 2,\) equipped with the sublinear Neumann boundary condition \(\frac{\partial u}{\partial \nu } = \mu u^{q}\) on \(\partial \Omega ,\) where \(0<q<1<p,\) and \(\mu \ge 0\) is a parameter. With sub- and supersolutions and a comparison principle for the equation, we analyze the asymptotic profile of the unique positive solution for the equation as \(\mu \rightarrow \infty .\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信