无5环平面图的公平着色与列表公平着色

IF 0.7 4区 数学 Q4 MATHEMATICS, APPLIED
Aijun Dong, Wenwen Zhang
{"title":"无5环平面图的公平着色与列表公平着色","authors":"Aijun Dong,&nbsp;Wenwen Zhang","doi":"10.1007/s00026-025-00748-z","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <i>G</i> is <i>k</i> list equitably colorable, if for any given <i>k</i>-uniform list assignment <i>L</i>, <i>G</i> is <i>L</i>-colorable and each color appears on at most <span>\\(\\lceil \\frac{|V(G)|}{k}\\rceil \\)</span> vertices. Kostochka et al. conjectured that if <i>G</i> is a connected graph with maximum degree at least 3, then <i>G</i> is <span>\\(\\Delta (G)\\)</span> list equitably colorable, unless <i>G</i> is a complete graph or is <span>\\(K_{k,k}\\)</span> for some odd <i>k</i>. An equitable <i>k</i>-coloring <i>c</i> of <i>G</i> is a mapping <i>c</i> from <i>V</i>(<i>G</i>) to <span>\\([k]=\\{1,2,\\ldots ,k\\}\\)</span> such that <span>\\(c(u)\\ne c(v)\\)</span> for each <span>\\(uv\\in E(G)\\)</span>, and for each <span>\\(k_i\\)</span>, <span>\\(k_j \\in [k]\\)</span>, <span>\\(||\\{v|c(v)=k_i\\}|-|\\{w|c(w)=k_j\\}||\\le 1\\)</span>. Chen et al. conjectured that each connected graph with maximum degree <span>\\(\\Delta \\)</span> that is different from the complete graph <span>\\(K_{\\Delta +1}\\)</span>, the complete bipartite graph <span>\\(K_{\\Delta , \\Delta }\\)</span> and an odd cycle admits an equitable coloring with <span>\\(\\Delta \\)</span> colors. In this paper, we prove that if <i>G</i> is a planar graph without 5-cycles, then <i>G</i> is <i>k</i> list equitably colorable and equitably <i>k</i>-colorable where <span>\\(k\\ge \\max \\{\\Delta (G),7\\}\\)</span>.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"29 3","pages":"637 - 656"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equitable and List Equitable Colorings of Planar Graphs Without 5-Cycles\",\"authors\":\"Aijun Dong,&nbsp;Wenwen Zhang\",\"doi\":\"10.1007/s00026-025-00748-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph <i>G</i> is <i>k</i> list equitably colorable, if for any given <i>k</i>-uniform list assignment <i>L</i>, <i>G</i> is <i>L</i>-colorable and each color appears on at most <span>\\\\(\\\\lceil \\\\frac{|V(G)|}{k}\\\\rceil \\\\)</span> vertices. Kostochka et al. conjectured that if <i>G</i> is a connected graph with maximum degree at least 3, then <i>G</i> is <span>\\\\(\\\\Delta (G)\\\\)</span> list equitably colorable, unless <i>G</i> is a complete graph or is <span>\\\\(K_{k,k}\\\\)</span> for some odd <i>k</i>. An equitable <i>k</i>-coloring <i>c</i> of <i>G</i> is a mapping <i>c</i> from <i>V</i>(<i>G</i>) to <span>\\\\([k]=\\\\{1,2,\\\\ldots ,k\\\\}\\\\)</span> such that <span>\\\\(c(u)\\\\ne c(v)\\\\)</span> for each <span>\\\\(uv\\\\in E(G)\\\\)</span>, and for each <span>\\\\(k_i\\\\)</span>, <span>\\\\(k_j \\\\in [k]\\\\)</span>, <span>\\\\(||\\\\{v|c(v)=k_i\\\\}|-|\\\\{w|c(w)=k_j\\\\}||\\\\le 1\\\\)</span>. Chen et al. conjectured that each connected graph with maximum degree <span>\\\\(\\\\Delta \\\\)</span> that is different from the complete graph <span>\\\\(K_{\\\\Delta +1}\\\\)</span>, the complete bipartite graph <span>\\\\(K_{\\\\Delta , \\\\Delta }\\\\)</span> and an odd cycle admits an equitable coloring with <span>\\\\(\\\\Delta \\\\)</span> colors. In this paper, we prove that if <i>G</i> is a planar graph without 5-cycles, then <i>G</i> is <i>k</i> list equitably colorable and equitably <i>k</i>-colorable where <span>\\\\(k\\\\ge \\\\max \\\\{\\\\Delta (G),7\\\\}\\\\)</span>.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"29 3\",\"pages\":\"637 - 656\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-025-00748-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-025-00748-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G是k列表可均匀着色的,如果对于任意给定的k-均匀列表赋值L, G是L可着色的,并且每种颜色最多出现在\(\lceil \frac{|V(G)|}{k}\rceil \)个顶点上。Kostochka等人推测,如果G是一个最大度数至少为3的连通图,则G是\(\Delta (G)\)列表公平可着色的,除非G是一个完全图或对于某个奇数k是\(K_{k,k}\)。G的一个公平k-着色c是从V(G)到\([k]=\{1,2,\ldots ,k\}\)的映射c,使得对于每个\(uv\in E(G)\),对于每个\(k_i\), \(k_j \in [k]\), \(||\{v|c(v)=k_i\}|-|\{w|c(w)=k_j\}||\le 1\),都是\(c(u)\ne c(v)\)。Chen等人推测,每个最大度\(\Delta \)不同于完全图\(K_{\Delta +1}\)、完全二部图\(K_{\Delta , \Delta }\)和奇循环的连通图都允许用\(\Delta \)颜色均匀着色。在本文中,我们证明了如果G是一个没有5环的平面图,那么G是k列可均匀着色的,并且在\(k\ge \max \{\Delta (G),7\}\)中是可均匀k色的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equitable and List Equitable Colorings of Planar Graphs Without 5-Cycles

Equitable and List Equitable Colorings of Planar Graphs Without 5-Cycles

Equitable and List Equitable Colorings of Planar Graphs Without 5-Cycles

A graph G is k list equitably colorable, if for any given k-uniform list assignment L, G is L-colorable and each color appears on at most \(\lceil \frac{|V(G)|}{k}\rceil \) vertices. Kostochka et al. conjectured that if G is a connected graph with maximum degree at least 3, then G is \(\Delta (G)\) list equitably colorable, unless G is a complete graph or is \(K_{k,k}\) for some odd k. An equitable k-coloring c of G is a mapping c from V(G) to \([k]=\{1,2,\ldots ,k\}\) such that \(c(u)\ne c(v)\) for each \(uv\in E(G)\), and for each \(k_i\), \(k_j \in [k]\), \(||\{v|c(v)=k_i\}|-|\{w|c(w)=k_j\}||\le 1\). Chen et al. conjectured that each connected graph with maximum degree \(\Delta \) that is different from the complete graph \(K_{\Delta +1}\), the complete bipartite graph \(K_{\Delta , \Delta }\) and an odd cycle admits an equitable coloring with \(\Delta \) colors. In this paper, we prove that if G is a planar graph without 5-cycles, then G is k list equitably colorable and equitably k-colorable where \(k\ge \max \{\Delta (G),7\}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信