{"title":"论拉普拉斯学派与单纯复合体的失向性","authors":"R. Balaji, Gargi Lather, Vinayak Gupta","doi":"10.1007/s00013-025-02146-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>K</i> be an <i>N</i>-dimensional simplicial complex. We investigate the spectrum of the up Laplacian matrix of <i>K</i>. Let <i>L</i> be the <span>\\((N-1)\\)</span>th up Laplacian matrix of <i>K</i>. We show that the largest eigenvalues of <i>L</i> and |<i>L</i>| are equal if and only if <i>K</i> is disorientable. We also derive lower bounds for the sum of the first <i>k</i> largest eigenvalues of <i>L</i>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 4","pages":"379 - 388"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Laplacians and the disorientability of a simplicial complex\",\"authors\":\"R. Balaji, Gargi Lather, Vinayak Gupta\",\"doi\":\"10.1007/s00013-025-02146-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>K</i> be an <i>N</i>-dimensional simplicial complex. We investigate the spectrum of the up Laplacian matrix of <i>K</i>. Let <i>L</i> be the <span>\\\\((N-1)\\\\)</span>th up Laplacian matrix of <i>K</i>. We show that the largest eigenvalues of <i>L</i> and |<i>L</i>| are equal if and only if <i>K</i> is disorientable. We also derive lower bounds for the sum of the first <i>k</i> largest eigenvalues of <i>L</i>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 4\",\"pages\":\"379 - 388\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02146-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02146-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Laplacians and the disorientability of a simplicial complex
Let K be an N-dimensional simplicial complex. We investigate the spectrum of the up Laplacian matrix of K. Let L be the \((N-1)\)th up Laplacian matrix of K. We show that the largest eigenvalues of L and |L| are equal if and only if K is disorientable. We also derive lower bounds for the sum of the first k largest eigenvalues of L.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.