泡格II:组合学

IF 0.7 4区 数学 Q4 MATHEMATICS, APPLIED
Thomas McConville, Henri Mühle
{"title":"泡格II:组合学","authors":"Thomas McConville,&nbsp;Henri Mühle","doi":"10.1007/s00026-025-00743-4","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce two simplicial complexes, the noncrossing matching complex and the noncrossing bipartite complex. Both complexes are intimately related to the bubble lattice introduced in our earlier article “Bubble Lattices I: Structure” (arXiv:2202.02874). We study these complexes from both an enumerative and a topological point of view. In particular, we prove that these complexes are shellable and give explicit formulas for certain refined face numbers. Lastly, we conjecture an intriguing connection of these refined face numbers to the so-called <i>M</i>-triangle of the shuffle lattice.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"29 3","pages":"657 - 690"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble Lattices II: Combinatorics\",\"authors\":\"Thomas McConville,&nbsp;Henri Mühle\",\"doi\":\"10.1007/s00026-025-00743-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce two simplicial complexes, the noncrossing matching complex and the noncrossing bipartite complex. Both complexes are intimately related to the bubble lattice introduced in our earlier article “Bubble Lattices I: Structure” (arXiv:2202.02874). We study these complexes from both an enumerative and a topological point of view. In particular, we prove that these complexes are shellable and give explicit formulas for certain refined face numbers. Lastly, we conjecture an intriguing connection of these refined face numbers to the so-called <i>M</i>-triangle of the shuffle lattice.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"29 3\",\"pages\":\"657 - 690\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-025-00743-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-025-00743-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了两种简单复形,即非交叉匹配复形和非交叉二部复形。这两种配合物都与我们之前的文章“气泡晶格I:结构”(arXiv:2202.02874)中介绍的气泡晶格密切相关。我们从枚举和拓扑两个角度来研究这些复合体。特别地,我们证明了这些配合物是可壳的,并给出了某些精炼面数的显式公式。最后,我们推测这些精致的面数与洗牌晶格的所谓m三角形之间有一个有趣的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bubble Lattices II: Combinatorics

We introduce two simplicial complexes, the noncrossing matching complex and the noncrossing bipartite complex. Both complexes are intimately related to the bubble lattice introduced in our earlier article “Bubble Lattices I: Structure” (arXiv:2202.02874). We study these complexes from both an enumerative and a topological point of view. In particular, we prove that these complexes are shellable and give explicit formulas for certain refined face numbers. Lastly, we conjecture an intriguing connection of these refined face numbers to the so-called M-triangle of the shuffle lattice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信