{"title":"TokenRec:学习为基于llm的生成式推荐标记ID","authors":"Haohao Qu;Wenqi Fan;Zihuai Zhao;Qing Li","doi":"10.1109/TKDE.2025.3599265","DOIUrl":null,"url":null,"abstract":"There is a growing interest in utilizing large language models (LLMs) to advance next-generation Recommender Systems (RecSys), driven by their outstanding language understanding and reasoning capabilities. In this scenario, tokenizing users and items becomes essential for ensuring seamless alignment of LLMs with recommendations. While studies have made progress in representing users and items using textual contents or latent representations, challenges remain in capturing high-order collaborative knowledge into discrete tokens compatible with LLMs and generalizing to unseen users/items. To address these challenges, we propose a novel framework called <bold>TokenRec</b>, which introduces an effective ID tokenization strategy and an efficient retrieval paradigm for LLM-based recommendations. Our tokenization strategy involves quantizing the masked user/item representations learned from collaborative filtering into discrete tokens, thus achieving smooth incorporation of high-order collaborative knowledge and generalizable tokenization of users and items for LLM-based RecSys. Meanwhile, our generative retrieval paradigm is designed to efficiently recommend top-K items for users, eliminating the need for the time-consuming auto-regressive decoding and beam search processes used by LLMs, thus significantly reducing inference time. Comprehensive experiments validate the effectiveness of the proposed methods, demonstrating that TokenRec outperforms competitive benchmarks, including both traditional recommender systems and emerging LLM-based recommender systems.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 10","pages":"6216-6231"},"PeriodicalIF":10.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TokenRec: Learning to Tokenize ID for LLM-Based Generative Recommendations\",\"authors\":\"Haohao Qu;Wenqi Fan;Zihuai Zhao;Qing Li\",\"doi\":\"10.1109/TKDE.2025.3599265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing interest in utilizing large language models (LLMs) to advance next-generation Recommender Systems (RecSys), driven by their outstanding language understanding and reasoning capabilities. In this scenario, tokenizing users and items becomes essential for ensuring seamless alignment of LLMs with recommendations. While studies have made progress in representing users and items using textual contents or latent representations, challenges remain in capturing high-order collaborative knowledge into discrete tokens compatible with LLMs and generalizing to unseen users/items. To address these challenges, we propose a novel framework called <bold>TokenRec</b>, which introduces an effective ID tokenization strategy and an efficient retrieval paradigm for LLM-based recommendations. Our tokenization strategy involves quantizing the masked user/item representations learned from collaborative filtering into discrete tokens, thus achieving smooth incorporation of high-order collaborative knowledge and generalizable tokenization of users and items for LLM-based RecSys. Meanwhile, our generative retrieval paradigm is designed to efficiently recommend top-K items for users, eliminating the need for the time-consuming auto-regressive decoding and beam search processes used by LLMs, thus significantly reducing inference time. Comprehensive experiments validate the effectiveness of the proposed methods, demonstrating that TokenRec outperforms competitive benchmarks, including both traditional recommender systems and emerging LLM-based recommender systems.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 10\",\"pages\":\"6216-6231\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11129873/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11129873/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TokenRec: Learning to Tokenize ID for LLM-Based Generative Recommendations
There is a growing interest in utilizing large language models (LLMs) to advance next-generation Recommender Systems (RecSys), driven by their outstanding language understanding and reasoning capabilities. In this scenario, tokenizing users and items becomes essential for ensuring seamless alignment of LLMs with recommendations. While studies have made progress in representing users and items using textual contents or latent representations, challenges remain in capturing high-order collaborative knowledge into discrete tokens compatible with LLMs and generalizing to unseen users/items. To address these challenges, we propose a novel framework called TokenRec, which introduces an effective ID tokenization strategy and an efficient retrieval paradigm for LLM-based recommendations. Our tokenization strategy involves quantizing the masked user/item representations learned from collaborative filtering into discrete tokens, thus achieving smooth incorporation of high-order collaborative knowledge and generalizable tokenization of users and items for LLM-based RecSys. Meanwhile, our generative retrieval paradigm is designed to efficiently recommend top-K items for users, eliminating the need for the time-consuming auto-regressive decoding and beam search processes used by LLMs, thus significantly reducing inference time. Comprehensive experiments validate the effectiveness of the proposed methods, demonstrating that TokenRec outperforms competitive benchmarks, including both traditional recommender systems and emerging LLM-based recommender systems.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.