基于频率特征增强的双时相遥感图像语义变化检测

IF 4.4
Renfang Wang;Kun Yang;Feng Wang;Hong Qiu;Yingying Huang;Xiufeng Liu
{"title":"基于频率特征增强的双时相遥感图像语义变化检测","authors":"Renfang Wang;Kun Yang;Feng Wang;Hong Qiu;Yingying Huang;Xiufeng Liu","doi":"10.1109/LGRS.2025.3605910","DOIUrl":null,"url":null,"abstract":"Deep learning is a powerful technique for semantic change detection (SCD) of bitemporal remote sensing images. In this work, we propose to improve SCD accuracy using deep learning with frequency feature enhancement (FFE). Specifically, we develop an FFE module that aims to enhance the performance of both binary change detection (BCD) and semantic segmentation, two main key components for obtaining high SCD accuracy, by integrating the Fourier transform and attention mechanisms. Experimental results on the SECOND and LandSat-SCD datasets demonstrate the effectiveness of the proposed method, and it achieves high resolution for change boundaries.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Change Detection of Bitemporal Remote Sensing Images Using Frequency Feature Enhancement\",\"authors\":\"Renfang Wang;Kun Yang;Feng Wang;Hong Qiu;Yingying Huang;Xiufeng Liu\",\"doi\":\"10.1109/LGRS.2025.3605910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a powerful technique for semantic change detection (SCD) of bitemporal remote sensing images. In this work, we propose to improve SCD accuracy using deep learning with frequency feature enhancement (FFE). Specifically, we develop an FFE module that aims to enhance the performance of both binary change detection (BCD) and semantic segmentation, two main key components for obtaining high SCD accuracy, by integrating the Fourier transform and attention mechanisms. Experimental results on the SECOND and LandSat-SCD datasets demonstrate the effectiveness of the proposed method, and it achieves high resolution for change boundaries.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11151606/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11151606/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习是一种有效的双时遥感图像语义变化检测技术。在这项工作中,我们建议使用频率特征增强(FFE)的深度学习来提高SCD的准确性。具体来说,我们开发了一个FFE模块,旨在通过集成傅里叶变换和注意机制来提高二进制变化检测(BCD)和语义分割的性能,这是获得高SCD精度的两个主要关键组件。在SECOND和LandSat-SCD数据集上的实验结果表明了该方法的有效性,并取得了较高的变化边界分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Change Detection of Bitemporal Remote Sensing Images Using Frequency Feature Enhancement
Deep learning is a powerful technique for semantic change detection (SCD) of bitemporal remote sensing images. In this work, we propose to improve SCD accuracy using deep learning with frequency feature enhancement (FFE). Specifically, we develop an FFE module that aims to enhance the performance of both binary change detection (BCD) and semantic segmentation, two main key components for obtaining high SCD accuracy, by integrating the Fourier transform and attention mechanisms. Experimental results on the SECOND and LandSat-SCD datasets demonstrate the effectiveness of the proposed method, and it achieves high resolution for change boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信