电渗析法浓缩废水中氨

IF 4.3 Q1 ENVIRONMENTAL SCIENCES
Hyuck Joo Choi, Mohammed Tahmid, Spandan Mondal and Marta C. Hatzell*, 
{"title":"电渗析法浓缩废水中氨","authors":"Hyuck Joo Choi,&nbsp;Mohammed Tahmid,&nbsp;Spandan Mondal and Marta C. Hatzell*,&nbsp;","doi":"10.1021/acsestwater.5c00721","DOIUrl":null,"url":null,"abstract":"<p >Electrodialysis (ED) is a promising technology for the recovery of ammonia from wastewater. However, separating ammonia directly from complex wastewater mixtures using ED is challenging due to membrane scaling, low selectivity, and high energy consumption. Here, we evaluate the potential of electrodialysis for ammonia recovery from simulated and real wastewater mixtures. The specific energy consumption (SEC) of electrodialysis exceeded 31 kWh/kg-N for simulated wastewater but decreased 4-fold to 7 kWh/kg-N after hardness removal. Concentration factors (CFs), the final concentration relative to the initial concentration, of NH<sub>4</sub><sup>+</sup> for real wastewater after ultrafiltration and for synthetic wastewater without hardness were 7.5 and 10, comparable to the CF of 9 for single-salt solutions (nonmixtures). We find that the concentrated product after ED with real and simulated synthetic wastewater includes K<sup>+</sup> and Na<sup>+</sup>, as cation exchange membranes exhibit K<sup>+</sup>/NH<sub>4</sub><sup>+</sup> and Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> selectivities near one. Thus, if the concentrated product is directly used as an aqueous fertilizer, the resulting product will be 30/30/30 for Na<sup>+</sup>, K<sup>+</sup>, and NH<sub>4</sub><sup>+</sup>. Finally, staged electrodialysis achieved a CF of ∼50 (2.42 N wt %) with SECs of 15.2–18.1 kWh/kg-N for synthetic wastewater without hardness, demonstrating promise for recovering ammonia from wastewater with a high concentration and low energy demand.</p><p >Recovering ammonia from wastewater with electrodialysis requires pretreatment of hardness to reduce energy consumption.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 9","pages":"5720–5727"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsestwater.5c00721","citationCount":"0","resultStr":"{\"title\":\"Concentrating Ammonia from Wastewater with Electrodialysis\",\"authors\":\"Hyuck Joo Choi,&nbsp;Mohammed Tahmid,&nbsp;Spandan Mondal and Marta C. Hatzell*,&nbsp;\",\"doi\":\"10.1021/acsestwater.5c00721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrodialysis (ED) is a promising technology for the recovery of ammonia from wastewater. However, separating ammonia directly from complex wastewater mixtures using ED is challenging due to membrane scaling, low selectivity, and high energy consumption. Here, we evaluate the potential of electrodialysis for ammonia recovery from simulated and real wastewater mixtures. The specific energy consumption (SEC) of electrodialysis exceeded 31 kWh/kg-N for simulated wastewater but decreased 4-fold to 7 kWh/kg-N after hardness removal. Concentration factors (CFs), the final concentration relative to the initial concentration, of NH<sub>4</sub><sup>+</sup> for real wastewater after ultrafiltration and for synthetic wastewater without hardness were 7.5 and 10, comparable to the CF of 9 for single-salt solutions (nonmixtures). We find that the concentrated product after ED with real and simulated synthetic wastewater includes K<sup>+</sup> and Na<sup>+</sup>, as cation exchange membranes exhibit K<sup>+</sup>/NH<sub>4</sub><sup>+</sup> and Na<sup>+</sup>/NH<sub>4</sub><sup>+</sup> selectivities near one. Thus, if the concentrated product is directly used as an aqueous fertilizer, the resulting product will be 30/30/30 for Na<sup>+</sup>, K<sup>+</sup>, and NH<sub>4</sub><sup>+</sup>. Finally, staged electrodialysis achieved a CF of ∼50 (2.42 N wt %) with SECs of 15.2–18.1 kWh/kg-N for synthetic wastewater without hardness, demonstrating promise for recovering ammonia from wastewater with a high concentration and low energy demand.</p><p >Recovering ammonia from wastewater with electrodialysis requires pretreatment of hardness to reduce energy consumption.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"5 9\",\"pages\":\"5720–5727\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsestwater.5c00721\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.5c00721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.5c00721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电渗析(ED)是一种很有前途的废水氨回收技术。然而,由于膜结垢、低选择性和高能耗,使用ED直接从复杂的废水混合物中分离氨是具有挑战性的。在这里,我们评估电渗析从模拟和实际废水混合物中回收氨的潜力。模拟废水电渗析的比能耗(SEC)超过31 kWh/kg-N,但去除硬度后降低4倍,为7 kWh/kg-N。超滤后的真实废水和无硬度合成废水的NH4+的最终浓度相对于初始浓度的浓度因子(CFs)分别为7.5和10,与单盐溶液(非混合物)的CF值9相当。我们发现,真实和模拟合成废水经ED处理后的浓缩产物包括K+和Na+,因为阳离子交换膜的K+/NH4+和Na+/NH4+的选择性接近1。因此,如果将浓缩产物直接用作水肥,则Na+, K+和NH4+的最终产物将是30/30/30。最后,对于无硬度的合成废水,阶段电渗析的CF为~ 50 (2.42 N wt %), SECs为15.2-18.1 kWh/kg-N,表明了从高浓度低能量需求的废水中回收氨的前景。电渗析法回收废水中的氨需要对硬度进行预处理,以降低能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentrating Ammonia from Wastewater with Electrodialysis

Electrodialysis (ED) is a promising technology for the recovery of ammonia from wastewater. However, separating ammonia directly from complex wastewater mixtures using ED is challenging due to membrane scaling, low selectivity, and high energy consumption. Here, we evaluate the potential of electrodialysis for ammonia recovery from simulated and real wastewater mixtures. The specific energy consumption (SEC) of electrodialysis exceeded 31 kWh/kg-N for simulated wastewater but decreased 4-fold to 7 kWh/kg-N after hardness removal. Concentration factors (CFs), the final concentration relative to the initial concentration, of NH4+ for real wastewater after ultrafiltration and for synthetic wastewater without hardness were 7.5 and 10, comparable to the CF of 9 for single-salt solutions (nonmixtures). We find that the concentrated product after ED with real and simulated synthetic wastewater includes K+ and Na+, as cation exchange membranes exhibit K+/NH4+ and Na+/NH4+ selectivities near one. Thus, if the concentrated product is directly used as an aqueous fertilizer, the resulting product will be 30/30/30 for Na+, K+, and NH4+. Finally, staged electrodialysis achieved a CF of ∼50 (2.42 N wt %) with SECs of 15.2–18.1 kWh/kg-N for synthetic wastewater without hardness, demonstrating promise for recovering ammonia from wastewater with a high concentration and low energy demand.

Recovering ammonia from wastewater with electrodialysis requires pretreatment of hardness to reduce energy consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信