利用地球同步卫星逐小时绘制PM2.5地图

Seohui Park*, Alqamah Sayeed, Junhyeon Seo, Barron H. Henderson, Aaron R. Naeger and Pawan Gupta, 
{"title":"利用地球同步卫星逐小时绘制PM2.5地图","authors":"Seohui Park*,&nbsp;Alqamah Sayeed,&nbsp;Junhyeon Seo,&nbsp;Barron H. Henderson,&nbsp;Aaron R. Naeger and Pawan Gupta,&nbsp;","doi":"10.1021/acsestair.4c00365","DOIUrl":null,"url":null,"abstract":"<p >This study estimates ground-level fine particulate matter (PM<sub>2.5</sub>) concentrations using geostationary satellites-derived Aerosol Optical Depth (AOD) and radiance measurements and meteorological parameters from the High-Resolution Rapid Refresh (HRRR) model, with AirNow PM<sub>2.5</sub> measurements over the contiguous United States (CONUS). A Deep Neural Network (DNN) was adopted and compared with other machine learning (ML) models (i.e., Random Forest and Light Gradient-Boosting Machine) to estimate surface PM<sub>2.5</sub> concentrations. The DNN model (without the tropospheric emissions: monitoring of pollution (TEMPO); 1 year) estimated PM<sub>2.5</sub> with an interquartile range (IQR) of 4.32 μg/m<sup>3</sup>, and outperformed ML models, with up to 44.68% better index of agreement (IOA) and 45.28% smaller relative root-mean-square error (rRMSE), particularly in high PM<sub>2.5</sub> cases. The hourly estimated PM<sub>2.5</sub> closely matched the observed PM<sub>2.5</sub> in both temporal trend and spatial distribution across the eastern CONUS. ML modeling was further enhanced to include TEMPO Level 1b (L1b) data. The DNN model with TEMPO improved performance, with an 8% higher <i>R</i><sup>2</sup> and a 25% lower rRMSE than the DNN model without TEMPO. The more significant improvement was seen during high smoke events using the TEMPO data. For the first time, we demonstrate the use of TEMPO L1b spectrally resolved radiances data to capture high PM<sub>2.5</sub> concentrations during the wildfire events, enhancing our understanding of PM<sub>2.5</sub> dynamics. This study provides a framework to integrate data from multiple geostationary satellites with HRRR model outputs to estimate surface air quality at high temporal resolution.</p><p >This study provides enhanced PM<sub>2.5</sub> monitoring estimated through deep neural networks, particularly during wildfire events, and supporting public health responses.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 9","pages":"1816–1830"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsestair.4c00365","citationCount":"0","resultStr":"{\"title\":\"Hour by Hour PM2.5 Mapping Using Geostationary Satellites\",\"authors\":\"Seohui Park*,&nbsp;Alqamah Sayeed,&nbsp;Junhyeon Seo,&nbsp;Barron H. Henderson,&nbsp;Aaron R. Naeger and Pawan Gupta,&nbsp;\",\"doi\":\"10.1021/acsestair.4c00365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study estimates ground-level fine particulate matter (PM<sub>2.5</sub>) concentrations using geostationary satellites-derived Aerosol Optical Depth (AOD) and radiance measurements and meteorological parameters from the High-Resolution Rapid Refresh (HRRR) model, with AirNow PM<sub>2.5</sub> measurements over the contiguous United States (CONUS). A Deep Neural Network (DNN) was adopted and compared with other machine learning (ML) models (i.e., Random Forest and Light Gradient-Boosting Machine) to estimate surface PM<sub>2.5</sub> concentrations. The DNN model (without the tropospheric emissions: monitoring of pollution (TEMPO); 1 year) estimated PM<sub>2.5</sub> with an interquartile range (IQR) of 4.32 μg/m<sup>3</sup>, and outperformed ML models, with up to 44.68% better index of agreement (IOA) and 45.28% smaller relative root-mean-square error (rRMSE), particularly in high PM<sub>2.5</sub> cases. The hourly estimated PM<sub>2.5</sub> closely matched the observed PM<sub>2.5</sub> in both temporal trend and spatial distribution across the eastern CONUS. ML modeling was further enhanced to include TEMPO Level 1b (L1b) data. The DNN model with TEMPO improved performance, with an 8% higher <i>R</i><sup>2</sup> and a 25% lower rRMSE than the DNN model without TEMPO. The more significant improvement was seen during high smoke events using the TEMPO data. For the first time, we demonstrate the use of TEMPO L1b spectrally resolved radiances data to capture high PM<sub>2.5</sub> concentrations during the wildfire events, enhancing our understanding of PM<sub>2.5</sub> dynamics. This study provides a framework to integrate data from multiple geostationary satellites with HRRR model outputs to estimate surface air quality at high temporal resolution.</p><p >This study provides enhanced PM<sub>2.5</sub> monitoring estimated through deep neural networks, particularly during wildfire events, and supporting public health responses.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"2 9\",\"pages\":\"1816–1830\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsestair.4c00365\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.4c00365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用地球静止卫星衍生的气溶胶光学深度(AOD)和辐射测量数据,以及高分辨率快速刷新(HRRR)模型的气象参数,结合AirNow在美国连续地区(CONUS)的PM2.5测量数据,估算了地面细颗粒物(PM2.5)浓度。采用深度神经网络(DNN)并与其他机器学习(ML)模型(即随机森林和光梯度增强机)进行比较来估计地表PM2.5浓度。DNN模式(不含对流层排放:污染监测);1年的模型估计PM2.5的四分位数间距(IQR)为4.32 μg/m3,优于ML模型,一致性指数(IOA)提高44.68%,相对均方根误差(rRMSE)降低45.28%,特别是在PM2.5高的情况下。每小时PM2.5估算值与观测值在时间趋势和空间分布上都非常接近。ML建模进一步增强,包括TEMPO Level 1b (L1b)数据。与没有TEMPO的DNN模型相比,带有TEMPO的DNN模型提高了性能,R2提高了8%,rRMSE降低了25%。在使用TEMPO数据的高烟雾事件中,可以看到更显着的改善。我们首次展示了使用TEMPO L1b光谱分辨辐射数据来捕获野火事件期间的高PM2.5浓度,从而增强了我们对PM2.5动态的理解。该研究提供了一个框架,将多颗地球同步卫星的数据与HRRR模型输出相结合,以高时间分辨率估计地面空气质量。本研究提供了通过深度神经网络估计的增强PM2.5监测,特别是在野火事件期间,并支持公共卫生响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hour by Hour PM2.5 Mapping Using Geostationary Satellites

This study estimates ground-level fine particulate matter (PM2.5) concentrations using geostationary satellites-derived Aerosol Optical Depth (AOD) and radiance measurements and meteorological parameters from the High-Resolution Rapid Refresh (HRRR) model, with AirNow PM2.5 measurements over the contiguous United States (CONUS). A Deep Neural Network (DNN) was adopted and compared with other machine learning (ML) models (i.e., Random Forest and Light Gradient-Boosting Machine) to estimate surface PM2.5 concentrations. The DNN model (without the tropospheric emissions: monitoring of pollution (TEMPO); 1 year) estimated PM2.5 with an interquartile range (IQR) of 4.32 μg/m3, and outperformed ML models, with up to 44.68% better index of agreement (IOA) and 45.28% smaller relative root-mean-square error (rRMSE), particularly in high PM2.5 cases. The hourly estimated PM2.5 closely matched the observed PM2.5 in both temporal trend and spatial distribution across the eastern CONUS. ML modeling was further enhanced to include TEMPO Level 1b (L1b) data. The DNN model with TEMPO improved performance, with an 8% higher R2 and a 25% lower rRMSE than the DNN model without TEMPO. The more significant improvement was seen during high smoke events using the TEMPO data. For the first time, we demonstrate the use of TEMPO L1b spectrally resolved radiances data to capture high PM2.5 concentrations during the wildfire events, enhancing our understanding of PM2.5 dynamics. This study provides a framework to integrate data from multiple geostationary satellites with HRRR model outputs to estimate surface air quality at high temporal resolution.

This study provides enhanced PM2.5 monitoring estimated through deep neural networks, particularly during wildfire events, and supporting public health responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信