Mwanarusi H. Mwatondo, Mwale Chiyenge, Alma Y. Rocha and Andrea I. Silverman*,
{"title":"污水源和实验室培养的大肠杆菌和肠球菌(粪肠球菌、粪肠球菌、casseliflavus)在游离氯、单氯胺、UVC和模拟阳光下的消毒动力学比较","authors":"Mwanarusi H. Mwatondo, Mwale Chiyenge, Alma Y. Rocha and Andrea I. Silverman*, ","doi":"10.1021/acsestwater.5c00285","DOIUrl":null,"url":null,"abstract":"<p >Most data on laboratory-scale experiments evaluating <i>E. coli</i> and enterococci disinfection are from experiments conducted using laboratory-cultured bacteria. However, environmental bacteria, such as those in wastewater, have potential to be more resistant to disinfection than their laboratory-cultured counterparts. Additionally, most <i>Enterococcus</i> disinfection studies have only evaluated <i>E. faecalis</i> despite the diversity of <i>Enterococcus</i> species in the environment. In this study, we evaluated inactivation kinetics of wastewater-sourced <i>E. coli</i> and enterococci, laboratory-cultured <i>E. coli</i>, and three species of laboratory-cultured <i>Enterococcus</i> with exposure to free chlorine, monochloramine, UVC, and simulated sunlight. All bacteria were purified and suspended in a chlorine-demand-free buffer with minimal light attenuation to allow comparison between populations without confounding matrix effects. Laboratory-cultured bacteria were more susceptible to the oxidants than the wastewater-sourced bacteria, highlighting that research using reference-strain bacteria in the laboratory may not reflect inactivation kinetics in the environment. When exposed to the light-based disinfectants, only laboratory-cultured <i>E. coli</i> and <i>E. faecalis</i> were more susceptible than the wastewater-sourced bacteria. Notably, different laboratory-cultured <i>Enterococcus</i> species had different inactivation rates, with <i>E. faecalis</i> being the most susceptible. These findings highlight the importance of incorporating indigenous environmental bacteria in laboratory studies and assessing a variety of <i>Enterococcus</i> species in disinfection research.</p><p >Environmental bacteria in wastewater can have slower disinfection kinetics than bacteria grown in the laboratory and should be included in laboratory-based experiments evaluating the mechanisms and kinetics of disinfection.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 9","pages":"5695–5706"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsestwater.5c00285","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Disinfection Kinetics of Wastewater-Sourced and Laboratory-Cultured E. coli and Enterococcus spp. (E. faecalis, E. faecium, E. casseliflavus) with Exposure to Free Chlorine, Monochloramine, UVC, and Simulated Sunlight\",\"authors\":\"Mwanarusi H. Mwatondo, Mwale Chiyenge, Alma Y. Rocha and Andrea I. Silverman*, \",\"doi\":\"10.1021/acsestwater.5c00285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Most data on laboratory-scale experiments evaluating <i>E. coli</i> and enterococci disinfection are from experiments conducted using laboratory-cultured bacteria. However, environmental bacteria, such as those in wastewater, have potential to be more resistant to disinfection than their laboratory-cultured counterparts. Additionally, most <i>Enterococcus</i> disinfection studies have only evaluated <i>E. faecalis</i> despite the diversity of <i>Enterococcus</i> species in the environment. In this study, we evaluated inactivation kinetics of wastewater-sourced <i>E. coli</i> and enterococci, laboratory-cultured <i>E. coli</i>, and three species of laboratory-cultured <i>Enterococcus</i> with exposure to free chlorine, monochloramine, UVC, and simulated sunlight. All bacteria were purified and suspended in a chlorine-demand-free buffer with minimal light attenuation to allow comparison between populations without confounding matrix effects. Laboratory-cultured bacteria were more susceptible to the oxidants than the wastewater-sourced bacteria, highlighting that research using reference-strain bacteria in the laboratory may not reflect inactivation kinetics in the environment. When exposed to the light-based disinfectants, only laboratory-cultured <i>E. coli</i> and <i>E. faecalis</i> were more susceptible than the wastewater-sourced bacteria. Notably, different laboratory-cultured <i>Enterococcus</i> species had different inactivation rates, with <i>E. faecalis</i> being the most susceptible. These findings highlight the importance of incorporating indigenous environmental bacteria in laboratory studies and assessing a variety of <i>Enterococcus</i> species in disinfection research.</p><p >Environmental bacteria in wastewater can have slower disinfection kinetics than bacteria grown in the laboratory and should be included in laboratory-based experiments evaluating the mechanisms and kinetics of disinfection.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"5 9\",\"pages\":\"5695–5706\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsestwater.5c00285\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.5c00285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.5c00285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Comparison of the Disinfection Kinetics of Wastewater-Sourced and Laboratory-Cultured E. coli and Enterococcus spp. (E. faecalis, E. faecium, E. casseliflavus) with Exposure to Free Chlorine, Monochloramine, UVC, and Simulated Sunlight
Most data on laboratory-scale experiments evaluating E. coli and enterococci disinfection are from experiments conducted using laboratory-cultured bacteria. However, environmental bacteria, such as those in wastewater, have potential to be more resistant to disinfection than their laboratory-cultured counterparts. Additionally, most Enterococcus disinfection studies have only evaluated E. faecalis despite the diversity of Enterococcus species in the environment. In this study, we evaluated inactivation kinetics of wastewater-sourced E. coli and enterococci, laboratory-cultured E. coli, and three species of laboratory-cultured Enterococcus with exposure to free chlorine, monochloramine, UVC, and simulated sunlight. All bacteria were purified and suspended in a chlorine-demand-free buffer with minimal light attenuation to allow comparison between populations without confounding matrix effects. Laboratory-cultured bacteria were more susceptible to the oxidants than the wastewater-sourced bacteria, highlighting that research using reference-strain bacteria in the laboratory may not reflect inactivation kinetics in the environment. When exposed to the light-based disinfectants, only laboratory-cultured E. coli and E. faecalis were more susceptible than the wastewater-sourced bacteria. Notably, different laboratory-cultured Enterococcus species had different inactivation rates, with E. faecalis being the most susceptible. These findings highlight the importance of incorporating indigenous environmental bacteria in laboratory studies and assessing a variety of Enterococcus species in disinfection research.
Environmental bacteria in wastewater can have slower disinfection kinetics than bacteria grown in the laboratory and should be included in laboratory-based experiments evaluating the mechanisms and kinetics of disinfection.