{"title":"在SWOT侧1和侧2辐射计轨道上首次实施GPD+湿对流层校正","authors":"Isabel Cardoso;Clara Lázaro;Telmo Vieira;M. Joana Fernandes","doi":"10.1109/LGRS.2025.3605854","DOIUrl":null,"url":null,"abstract":"The Surface Water and Ocean Topography (SWOT) satellite provides high-resolution observations of the ocean surface topography and elevation of inland waters. Measurements from the two onboard Advanced Microwave Radiometers (AMRs) are used to compute the wet tropospheric correction (WTC), accounting for the radar signal delay due to water vapor and cloud liquid water content in the troposphere. This study presents the first implementation of the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) algorithm for SWOT to estimate the WTC when AMR observations are absent or invalid. Using the first 15 science-phase cycles between 50°N and 50°S, GPD+ retrieves the WTC for approximately 7% of points per cycle that would otherwise be excluded. Retrieval rates per cycle range from less than 5% of the points in passes mostly over open ocean, where the WTC derived from the radiometers is usually preserved, to up to 15% in passes including coastal zones. These results indicate that GPD+ can recover WTC values otherwise unavailable from SWOT’s radiometers, increasing the availability of valid WTC for SWOT measurements, in particular over coastal regions. Further refinements will focus on improving the accuracy of the WTC along the KaRIn swath and the Poseidon-3C nadir track.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Implementation of GPD+ Wet Tropospheric Correction on SWOT Side 1 and Side 2 Radiometer Tracks\",\"authors\":\"Isabel Cardoso;Clara Lázaro;Telmo Vieira;M. Joana Fernandes\",\"doi\":\"10.1109/LGRS.2025.3605854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Surface Water and Ocean Topography (SWOT) satellite provides high-resolution observations of the ocean surface topography and elevation of inland waters. Measurements from the two onboard Advanced Microwave Radiometers (AMRs) are used to compute the wet tropospheric correction (WTC), accounting for the radar signal delay due to water vapor and cloud liquid water content in the troposphere. This study presents the first implementation of the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) algorithm for SWOT to estimate the WTC when AMR observations are absent or invalid. Using the first 15 science-phase cycles between 50°N and 50°S, GPD+ retrieves the WTC for approximately 7% of points per cycle that would otherwise be excluded. Retrieval rates per cycle range from less than 5% of the points in passes mostly over open ocean, where the WTC derived from the radiometers is usually preserved, to up to 15% in passes including coastal zones. These results indicate that GPD+ can recover WTC values otherwise unavailable from SWOT’s radiometers, increasing the availability of valid WTC for SWOT measurements, in particular over coastal regions. Further refinements will focus on improving the accuracy of the WTC along the KaRIn swath and the Poseidon-3C nadir track.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11150397/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11150397/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First Implementation of GPD+ Wet Tropospheric Correction on SWOT Side 1 and Side 2 Radiometer Tracks
The Surface Water and Ocean Topography (SWOT) satellite provides high-resolution observations of the ocean surface topography and elevation of inland waters. Measurements from the two onboard Advanced Microwave Radiometers (AMRs) are used to compute the wet tropospheric correction (WTC), accounting for the radar signal delay due to water vapor and cloud liquid water content in the troposphere. This study presents the first implementation of the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) algorithm for SWOT to estimate the WTC when AMR observations are absent or invalid. Using the first 15 science-phase cycles between 50°N and 50°S, GPD+ retrieves the WTC for approximately 7% of points per cycle that would otherwise be excluded. Retrieval rates per cycle range from less than 5% of the points in passes mostly over open ocean, where the WTC derived from the radiometers is usually preserved, to up to 15% in passes including coastal zones. These results indicate that GPD+ can recover WTC values otherwise unavailable from SWOT’s radiometers, increasing the availability of valid WTC for SWOT measurements, in particular over coastal regions. Further refinements will focus on improving the accuracy of the WTC along the KaRIn swath and the Poseidon-3C nadir track.