Bingquan Han;Chen Yu;Zhenhong Li;Chuang Song;Xiaoning Hu;Jie Li
{"title":"干涉型合成孔径雷达时间序列分析的多弧平差方法","authors":"Bingquan Han;Chen Yu;Zhenhong Li;Chuang Song;Xiaoning Hu;Jie Li","doi":"10.1109/LGRS.2025.3602123","DOIUrl":null,"url":null,"abstract":"Accurately measuring surface deformation velocity using interferometric synthetic aperture radar (InSAR) is crucial for understanding geophysical processes. However, traditional methods often face challenges in capturing subtle deformations over long distances, as errors introduced during unwrapping can accumulate overextended spatial extents. This study introduces a multiarc adjustment (MAA) method aimed at mitigating these errors, especially in high-precision monitoring scenarios, where velocities are sensitive to the location of the reference point. Simulation results demonstrate that the MAA method significantly outperforms the traditional method, achieving substantial reductions in rms under noisy conditions and complex phase unwrapping scenarios. Furthermore, integrating the MAA method into fault slip inversion improves the accuracy of slip distribution estimations. Applications to real datasets from the southern Tibet region and the San Andreas Fault further validate the MAA method’s effectiveness. These findings underscore the MAA method’s potential to enhance deformation velocity measurements in challenging environments, establishing it as a valuable tool for geodetic and tectonic studies.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiarc Adjustment Method for Interferometric Synthetic Aperture Radar Time-Series Analysis\",\"authors\":\"Bingquan Han;Chen Yu;Zhenhong Li;Chuang Song;Xiaoning Hu;Jie Li\",\"doi\":\"10.1109/LGRS.2025.3602123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately measuring surface deformation velocity using interferometric synthetic aperture radar (InSAR) is crucial for understanding geophysical processes. However, traditional methods often face challenges in capturing subtle deformations over long distances, as errors introduced during unwrapping can accumulate overextended spatial extents. This study introduces a multiarc adjustment (MAA) method aimed at mitigating these errors, especially in high-precision monitoring scenarios, where velocities are sensitive to the location of the reference point. Simulation results demonstrate that the MAA method significantly outperforms the traditional method, achieving substantial reductions in rms under noisy conditions and complex phase unwrapping scenarios. Furthermore, integrating the MAA method into fault slip inversion improves the accuracy of slip distribution estimations. Applications to real datasets from the southern Tibet region and the San Andreas Fault further validate the MAA method’s effectiveness. These findings underscore the MAA method’s potential to enhance deformation velocity measurements in challenging environments, establishing it as a valuable tool for geodetic and tectonic studies.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11138019/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11138019/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multiarc Adjustment Method for Interferometric Synthetic Aperture Radar Time-Series Analysis
Accurately measuring surface deformation velocity using interferometric synthetic aperture radar (InSAR) is crucial for understanding geophysical processes. However, traditional methods often face challenges in capturing subtle deformations over long distances, as errors introduced during unwrapping can accumulate overextended spatial extents. This study introduces a multiarc adjustment (MAA) method aimed at mitigating these errors, especially in high-precision monitoring scenarios, where velocities are sensitive to the location of the reference point. Simulation results demonstrate that the MAA method significantly outperforms the traditional method, achieving substantial reductions in rms under noisy conditions and complex phase unwrapping scenarios. Furthermore, integrating the MAA method into fault slip inversion improves the accuracy of slip distribution estimations. Applications to real datasets from the southern Tibet region and the San Andreas Fault further validate the MAA method’s effectiveness. These findings underscore the MAA method’s potential to enhance deformation velocity measurements in challenging environments, establishing it as a valuable tool for geodetic and tectonic studies.