解析区间映射动态模态分解的收敛性

IF 2.7 1区 数学 Q1 MATHEMATICS
Elliz Akindji, Julia Slipantschuk, Oscar F. Bandtlow, Wolfram Just
{"title":"解析区间映射动态模态分解的收敛性","authors":"Elliz Akindji, Julia Slipantschuk, Oscar F. Bandtlow, Wolfram Just","doi":"10.1002/cpa.70011","DOIUrl":null,"url":null,"abstract":"Extended dynamic mode decomposition (EDMD) is a data‐driven algorithm for approximating spectral data of the Koopman operator associated to a dynamical system, combining a Galerkin method with functions and a quadrature method with quadrature nodes. Spectral convergence of this method subtly depends on an appropriate choice of the space of observables. For chaotic analytic full branch maps of the interval, we derive a constraint between and guaranteeing spectral convergence of EDMD. In particular, the computed eigenvalues converge exponentially fast (in ) to the eigenvalues of the Koopman operator, taken to act on the dual space of a certain Banach space of analytic functions.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"74 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence properties of dynamic mode decomposition for analytic interval maps\",\"authors\":\"Elliz Akindji, Julia Slipantschuk, Oscar F. Bandtlow, Wolfram Just\",\"doi\":\"10.1002/cpa.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended dynamic mode decomposition (EDMD) is a data‐driven algorithm for approximating spectral data of the Koopman operator associated to a dynamical system, combining a Galerkin method with functions and a quadrature method with quadrature nodes. Spectral convergence of this method subtly depends on an appropriate choice of the space of observables. For chaotic analytic full branch maps of the interval, we derive a constraint between and guaranteeing spectral convergence of EDMD. In particular, the computed eigenvalues converge exponentially fast (in ) to the eigenvalues of the Koopman operator, taken to act on the dual space of a certain Banach space of analytic functions.\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/cpa.70011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.70011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

扩展动态模态分解(EDMD)是一种数据驱动的算法,用于逼近与动力系统相关的Koopman算子的谱数据,将Galerkin方法与函数相结合,将正交方法与正交节点相结合。该方法的谱收敛性巧妙地依赖于观测空间的适当选择。对于区间的混沌解析全分支映射,给出了保证EDMD谱收敛的约束条件。特别地,计算出的特征值以指数速度(In)收敛于作用于某一解析函数的Banach空间的对偶空间上的Koopman算子的特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence properties of dynamic mode decomposition for analytic interval maps
Extended dynamic mode decomposition (EDMD) is a data‐driven algorithm for approximating spectral data of the Koopman operator associated to a dynamical system, combining a Galerkin method with functions and a quadrature method with quadrature nodes. Spectral convergence of this method subtly depends on an appropriate choice of the space of observables. For chaotic analytic full branch maps of the interval, we derive a constraint between and guaranteeing spectral convergence of EDMD. In particular, the computed eigenvalues converge exponentially fast (in ) to the eigenvalues of the Koopman operator, taken to act on the dual space of a certain Banach space of analytic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信