经颅交流电刺激对双室模型神经元峰列相关性的影响。

IF 1.6 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Xuelin Huang, Xile Wei, Jiang Wang, Guosheng Yi
{"title":"经颅交流电刺激对双室模型神经元峰列相关性的影响。","authors":"Xuelin Huang, Xile Wei, Jiang Wang, Guosheng Yi","doi":"10.1007/s00422-025-01025-1","DOIUrl":null,"url":null,"abstract":"<p><p>Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood. In this study, we use a pair of unconnected two-compartment model neurons of the integrate-and-fire (IF) type to simulate the correlated spike trains driven by shared fluctuating dendritic inputs and exposed to weak alternating electric fields. Our results show that the output correlation increases with field intensity, but increases and then decreases with field frequency, displaying thus a frequency resonance. Through varying somatic and dendritic morphologies, we demonstrate that morphological differences between the soma and dendrites fundamentally shape the correlation-frequency resonance, with more pronounced differences yielding stronger resonance effects. Moreover, the anti-phase sinusoidal modulations induced by tACS at the soma and dendrite promote this correlation-frequency resonance, particularly when dendritic fluctuations exhibit a large mean value. We further examine the tACS effects on output correlation in biophysically and morphologically realistic pyramidal model neurons, revealing similar patterns to those observed in the two-compartment models. Our findings provide new insights into how tACS modulates the correlated spike trains and highlight the critical role of morphological differences between the soma and dendrites in determining the frequency-dependent output correlation. These predictions should be taken into consideration when understanding the tACS effects on population correlation and population coding.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":"119 4-6","pages":"26"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of transcranial alternating current stimulation on Spike train correlation in two-compartment model neurons.\",\"authors\":\"Xuelin Huang, Xile Wei, Jiang Wang, Guosheng Yi\",\"doi\":\"10.1007/s00422-025-01025-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood. In this study, we use a pair of unconnected two-compartment model neurons of the integrate-and-fire (IF) type to simulate the correlated spike trains driven by shared fluctuating dendritic inputs and exposed to weak alternating electric fields. Our results show that the output correlation increases with field intensity, but increases and then decreases with field frequency, displaying thus a frequency resonance. Through varying somatic and dendritic morphologies, we demonstrate that morphological differences between the soma and dendrites fundamentally shape the correlation-frequency resonance, with more pronounced differences yielding stronger resonance effects. Moreover, the anti-phase sinusoidal modulations induced by tACS at the soma and dendrite promote this correlation-frequency resonance, particularly when dendritic fluctuations exhibit a large mean value. We further examine the tACS effects on output correlation in biophysically and morphologically realistic pyramidal model neurons, revealing similar patterns to those observed in the two-compartment models. Our findings provide new insights into how tACS modulates the correlated spike trains and highlight the critical role of morphological differences between the soma and dendrites in determining the frequency-dependent output correlation. These predictions should be taken into consideration when understanding the tACS effects on population correlation and population coding.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":\"119 4-6\",\"pages\":\"26\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-025-01025-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-025-01025-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

相关尖峰在大量神经元中被广泛发现,并与神经编码有关。经颅交流电刺激(tACS)是一种很有前途的无创脑刺激技术,可以调节神经元的尖峰活动。尽管其应用越来越广泛,但tACS对尖峰序列间时间相关性的影响仍未完全了解。在这项研究中,我们使用一对未连接的整合-放电(IF)型双室模型神经元来模拟由共享波动树突输入驱动并暴露于弱交变电场下的相关尖峰序列。结果表明,输出相关性随场强增大而增大,随场频增大而先增大后减小,表现为频率共振。通过不同的体细胞和树突形态,我们证明了体细胞和树突之间的形态差异从根本上塑造了相关频率共振,越明显的差异产生更强的共振效应。此外,在胞体和树突上,tACS诱导的反相位正弦调制促进了这种相关频率共振,特别是当树突波动表现出较大的平均值时。我们进一步研究了tACS对生物物理和形态学逼真的锥体模型神经元输出相关性的影响,揭示了与双室模型相似的模式。我们的研究结果为tACS如何调节相关的尖峰序列提供了新的见解,并强调了体细胞和树突之间的形态差异在确定频率依赖性输出相关性中的关键作用。在理解tACS对种群相关性和种群编码的影响时,应该考虑到这些预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of transcranial alternating current stimulation on Spike train correlation in two-compartment model neurons.

Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood. In this study, we use a pair of unconnected two-compartment model neurons of the integrate-and-fire (IF) type to simulate the correlated spike trains driven by shared fluctuating dendritic inputs and exposed to weak alternating electric fields. Our results show that the output correlation increases with field intensity, but increases and then decreases with field frequency, displaying thus a frequency resonance. Through varying somatic and dendritic morphologies, we demonstrate that morphological differences between the soma and dendrites fundamentally shape the correlation-frequency resonance, with more pronounced differences yielding stronger resonance effects. Moreover, the anti-phase sinusoidal modulations induced by tACS at the soma and dendrite promote this correlation-frequency resonance, particularly when dendritic fluctuations exhibit a large mean value. We further examine the tACS effects on output correlation in biophysically and morphologically realistic pyramidal model neurons, revealing similar patterns to those observed in the two-compartment models. Our findings provide new insights into how tACS modulates the correlated spike trains and highlight the critical role of morphological differences between the soma and dendrites in determining the frequency-dependent output correlation. These predictions should be taken into consideration when understanding the tACS effects on population correlation and population coding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信