{"title":"用层次回归模型估计腕部光电体积脉搏波和心电图信号的腕部-踝关节脉搏波速度:方法设计。","authors":"Chih-I Ho, Chia-Hsiang Yen, Yu-Chuan Li, Chiu-Hua Huang, Jia-Wei Guo, Pei-Yun Tsai, Hung-Ju Lin, Tzung-Dau Wang","doi":"10.2196/58756","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and support pervasive and long-term monitoring of personal health condition.</p><p><strong>Objective: </strong>In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and electrocardiography (ECG) from smartwatch.</p><p><strong>Methods: </strong>A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch from 80 men and 82 women with average age of 63.4 (SD 13.4) and 64.3 (SD 11.6) years. Feature extraction and weighted pulse decomposition were applied to identify morphological characteristics regarding blood volume change and component waves in preprocessed PPG and ECG signals. A systematic strategy of feature combination was performed. The hierarchical regression method based on the random forest for classification and extreme gradient boosting (XGBoost) algorithms for regression was used, which first classified the data into subdivisions. The respective regression model for the subdivision was constructed with an overlapping zone.</p><p><strong>Results: </strong>By using 914 sets of wrist PPG and ECG signals for baPWV estimation, the hierarchical regression model with 2 subdivisions and an overlapping zone of 400 cm per second achieved root-mean-square error of 145.0 cm per second and 141.4 cm per second for 24 men and 26 women, respectively, which is better than the general XGBoost regression model and the multivariable regression model (all P<.001).</p><p><strong>Conclusions: </strong>We for the first time demonstrated that baPWV could be reliably estimated by the wrist PPG and ECG signals measured by the wearable device. Whether our algorithm could be applied clinically needs further verification.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"10 ","pages":"e58756"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimation of Brachial-Ankle Pulse Wave Velocity With Hierarchical Regression Model From Wrist Photoplethysmography and Electrocardiographic Signals: Method Design.\",\"authors\":\"Chih-I Ho, Chia-Hsiang Yen, Yu-Chuan Li, Chiu-Hua Huang, Jia-Wei Guo, Pei-Yun Tsai, Hung-Ju Lin, Tzung-Dau Wang\",\"doi\":\"10.2196/58756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and support pervasive and long-term monitoring of personal health condition.</p><p><strong>Objective: </strong>In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and electrocardiography (ECG) from smartwatch.</p><p><strong>Methods: </strong>A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch from 80 men and 82 women with average age of 63.4 (SD 13.4) and 64.3 (SD 11.6) years. Feature extraction and weighted pulse decomposition were applied to identify morphological characteristics regarding blood volume change and component waves in preprocessed PPG and ECG signals. A systematic strategy of feature combination was performed. The hierarchical regression method based on the random forest for classification and extreme gradient boosting (XGBoost) algorithms for regression was used, which first classified the data into subdivisions. The respective regression model for the subdivision was constructed with an overlapping zone.</p><p><strong>Results: </strong>By using 914 sets of wrist PPG and ECG signals for baPWV estimation, the hierarchical regression model with 2 subdivisions and an overlapping zone of 400 cm per second achieved root-mean-square error of 145.0 cm per second and 141.4 cm per second for 24 men and 26 women, respectively, which is better than the general XGBoost regression model and the multivariable regression model (all P<.001).</p><p><strong>Conclusions: </strong>We for the first time demonstrated that baPWV could be reliably estimated by the wrist PPG and ECG signals measured by the wearable device. Whether our algorithm could be applied clinically needs further verification.</p>\",\"PeriodicalId\":87288,\"journal\":{\"name\":\"JMIR biomedical engineering\",\"volume\":\"10 \",\"pages\":\"e58756\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/58756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/58756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
背景:可穿戴设备捕获的光容积脉搏波(PPG)信号可以提供血管年龄信息,支持对个人健康状况的普遍和长期监测。目的:在本研究中,我们旨在通过手腕PPG和智能手表的心电图(ECG)来估计臂踝脉搏波速度(baPWV)。方法:通过智能手表收集80名男性和82名女性的914个手腕PPG和ECG序列以及278个baPWV测量数据,平均年龄分别为63.4 (SD 13.4)和64.3 (SD 11.6)岁。采用特征提取和加权脉冲分解方法对预处理后的PPG和ECG信号进行血容量变化和分量波的形态学特征识别。采用系统的特征组合策略。采用基于随机森林分类和极端梯度提升(XGBoost)算法的分层回归方法,首先对数据进行细分;用重叠区域构建各细分区域的回归模型。结果:利用914组腕部PPG和心电信号进行baPWV估计,2细分重叠区400 cm / s的层次回归模型分别对24名男性和26名女性实现了145.0 cm / s和141.4 cm / s的均方根误差,优于一般XGBoost回归模型和多变量回归模型(均p < 0.05)。我们首次证明了通过可穿戴设备测量的手腕PPG和心电信号可以可靠地估计baPWV。我们的算法能否在临床上应用还需要进一步验证。
Estimation of Brachial-Ankle Pulse Wave Velocity With Hierarchical Regression Model From Wrist Photoplethysmography and Electrocardiographic Signals: Method Design.
Background: Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and support pervasive and long-term monitoring of personal health condition.
Objective: In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and electrocardiography (ECG) from smartwatch.
Methods: A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch from 80 men and 82 women with average age of 63.4 (SD 13.4) and 64.3 (SD 11.6) years. Feature extraction and weighted pulse decomposition were applied to identify morphological characteristics regarding blood volume change and component waves in preprocessed PPG and ECG signals. A systematic strategy of feature combination was performed. The hierarchical regression method based on the random forest for classification and extreme gradient boosting (XGBoost) algorithms for regression was used, which first classified the data into subdivisions. The respective regression model for the subdivision was constructed with an overlapping zone.
Results: By using 914 sets of wrist PPG and ECG signals for baPWV estimation, the hierarchical regression model with 2 subdivisions and an overlapping zone of 400 cm per second achieved root-mean-square error of 145.0 cm per second and 141.4 cm per second for 24 men and 26 women, respectively, which is better than the general XGBoost regression model and the multivariable regression model (all P<.001).
Conclusions: We for the first time demonstrated that baPWV could be reliably estimated by the wrist PPG and ECG signals measured by the wearable device. Whether our algorithm could be applied clinically needs further verification.