整合群体水平和基于细胞的药物重新定位特征。

IF 5.4
Chunfeng He, Yue Xu, Yuan Zhou, Jiayao Fan, Chunxiao Cheng, Ran Meng, Lang Wu, Ruiyuan Pan, Ravi V Shah, Eric R Gamazon, Dan Zhou
{"title":"整合群体水平和基于细胞的药物重新定位特征。","authors":"Chunfeng He, Yue Xu, Yuan Zhou, Jiayao Fan, Chunxiao Cheng, Ran Meng, Lang Wu, Ruiyuan Pan, Ravi V Shah, Eric R Gamazon, Dan Zhou","doi":"10.1093/bioinformatics/btaf498","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials toward Food and Drug Administration approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.</p><p><strong>Results: </strong>We propose a framework called \"Transcriptome-informed Reversal Distance\" (TReD) that embeds the disease signatures and drug response profiles into a high-dimensional normed space to quantify the reversal potential of candidate drugs in a disease-related cell-based screening. We applied TReD to COVID-19, type 2 diabetes, and Alzheimer's disease (AD), identifying 36, 16, and 11 candidate drugs, respectively. Among these, literature supports 69% (25/36), 31% (5/16), and 64% (7/11) of the drugs, with clinical trials conducted for seven COVID-19 candidates and three AD candidates. In summary, we propose a comprehensive genetics-anchored framework integrating population-level signatures and cell-based screening that has the potential to accelerate the search for new therapeutic strategies.</p><p><strong>Availability and implementation: </strong>Source code and datasets considered in this study are available at Github (https://github.com/zdangm/TReD). An archived snapshot is deposited at Zenodo (https://doi.org/10.5281/zenodo.16791909).</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating population-level and cell-based signatures for drug repositioning.\",\"authors\":\"Chunfeng He, Yue Xu, Yuan Zhou, Jiayao Fan, Chunxiao Cheng, Ran Meng, Lang Wu, Ruiyuan Pan, Ravi V Shah, Eric R Gamazon, Dan Zhou\",\"doi\":\"10.1093/bioinformatics/btaf498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials toward Food and Drug Administration approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.</p><p><strong>Results: </strong>We propose a framework called \\\"Transcriptome-informed Reversal Distance\\\" (TReD) that embeds the disease signatures and drug response profiles into a high-dimensional normed space to quantify the reversal potential of candidate drugs in a disease-related cell-based screening. We applied TReD to COVID-19, type 2 diabetes, and Alzheimer's disease (AD), identifying 36, 16, and 11 candidate drugs, respectively. Among these, literature supports 69% (25/36), 31% (5/16), and 64% (7/11) of the drugs, with clinical trials conducted for seven COVID-19 candidates and three AD candidates. In summary, we propose a comprehensive genetics-anchored framework integrating population-level signatures and cell-based screening that has the potential to accelerate the search for new therapeutic strategies.</p><p><strong>Availability and implementation: </strong>Source code and datasets considered in this study are available at Github (https://github.com/zdangm/TReD). An archived snapshot is deposited at Zenodo (https://doi.org/10.5281/zenodo.16791909).</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:药物重新定位提供了一种简化和经济有效的方法来扩大治疗可能性的范围。有人类基因证据的药物更有可能成功地通过临床试验,获得FDA的批准。基于单基因的药物重新定位方法已经实施,但利用广泛分子特征的方法仍未得到充分探索。结果:我们提出了一个名为“trred”(转录组信息逆转距离)的框架,该框架将疾病特征和药物反应概况嵌入到高维规范空间中,以量化候选药物在疾病相关细胞筛选中的逆转潜力。我们将TReD应用于COVID-19、2型糖尿病(T2D)和阿尔茨海默病(AD),分别确定了36、16和11种候选药物。其中文献支持的药物比例分别为69%(25/36)、31%(5/16)和64%(7/11),对7个COVID-19候选药物和3个AD候选药物进行了临床试验。总之,我们提出了一个综合的遗传学锚定框架,整合了群体水平的特征和基于细胞的筛选,有可能加速寻找新的治疗策略。可用性:本研究中考虑的源代码和数据集可在Github (https://github.com/zdangm/TReD)获得。存档的快照存放在Zenodo (https://doi.org/10.5281/zenodo.16791909).Supplementary information:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating population-level and cell-based signatures for drug repositioning.

Motivation: Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials toward Food and Drug Administration approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.

Results: We propose a framework called "Transcriptome-informed Reversal Distance" (TReD) that embeds the disease signatures and drug response profiles into a high-dimensional normed space to quantify the reversal potential of candidate drugs in a disease-related cell-based screening. We applied TReD to COVID-19, type 2 diabetes, and Alzheimer's disease (AD), identifying 36, 16, and 11 candidate drugs, respectively. Among these, literature supports 69% (25/36), 31% (5/16), and 64% (7/11) of the drugs, with clinical trials conducted for seven COVID-19 candidates and three AD candidates. In summary, we propose a comprehensive genetics-anchored framework integrating population-level signatures and cell-based screening that has the potential to accelerate the search for new therapeutic strategies.

Availability and implementation: Source code and datasets considered in this study are available at Github (https://github.com/zdangm/TReD). An archived snapshot is deposited at Zenodo (https://doi.org/10.5281/zenodo.16791909).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信