InterVelo:在多组单细胞数据中估计伪时间和RNA速度的相互增强模型。

IF 5.4
Yurou Wang, Zhixiang Lin, Tao Wang
{"title":"InterVelo:在多组单细胞数据中估计伪时间和RNA速度的相互增强模型。","authors":"Yurou Wang, Zhixiang Lin, Tao Wang","doi":"10.1093/bioinformatics/btaf500","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>RNA velocity has become a powerful tool for uncovering transcriptional dynamics in snapshot single-cell data. However, current RNA velocity approaches often assume constant transcriptional rates and treat genes independently with gene-specific times, which may introduce biases and deviate from biological realities. Here, we present InterVelo, a novel deep learning framework that simultaneously learns cellular pseudotime and RNA velocity.</p><p><strong>Results: </strong>InterVelo leverages an unsupervised cellular time to guide RNA velocity estimation, while the estimated RNA velocity in turn refines the direction of pseudotime. By benchmarking InterVelo against existing methods on both simulated and real datasets, we demonstrate its superior performance in recovering pseudotime and RNA velocity. InterVelo yields more precise velocity estimations in terms of both direction and magnitude, with outstanding robustness across diverse scenarios. Furthermore, it successfully identifies driver genes and enables reliable gene activity enrichment analysis. The flexible architecture of InterVelo also allows for the integration of multi-omic data, enhancing its applicability to complex biological systems.</p><p><strong>Availability: </strong>InterVelo is implemented by python, and the code is available on GitHub https://github.com/yurouwang-rosie/InterVelo and has been archived with a DOI https://doi.org/10.5281/zenodo.16158798 for reproducibility.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InterVelo: A Mutually Enhancing Model for Estimating Pseudotime and RNA Velocity in Multi-Omic Single-Cell Data.\",\"authors\":\"Yurou Wang, Zhixiang Lin, Tao Wang\",\"doi\":\"10.1093/bioinformatics/btaf500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>RNA velocity has become a powerful tool for uncovering transcriptional dynamics in snapshot single-cell data. However, current RNA velocity approaches often assume constant transcriptional rates and treat genes independently with gene-specific times, which may introduce biases and deviate from biological realities. Here, we present InterVelo, a novel deep learning framework that simultaneously learns cellular pseudotime and RNA velocity.</p><p><strong>Results: </strong>InterVelo leverages an unsupervised cellular time to guide RNA velocity estimation, while the estimated RNA velocity in turn refines the direction of pseudotime. By benchmarking InterVelo against existing methods on both simulated and real datasets, we demonstrate its superior performance in recovering pseudotime and RNA velocity. InterVelo yields more precise velocity estimations in terms of both direction and magnitude, with outstanding robustness across diverse scenarios. Furthermore, it successfully identifies driver genes and enables reliable gene activity enrichment analysis. The flexible architecture of InterVelo also allows for the integration of multi-omic data, enhancing its applicability to complex biological systems.</p><p><strong>Availability: </strong>InterVelo is implemented by python, and the code is available on GitHub https://github.com/yurouwang-rosie/InterVelo and has been archived with a DOI https://doi.org/10.5281/zenodo.16158798 for reproducibility.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:RNA速度已经成为揭示单细胞快照数据中转录动力学的强大工具。然而,目前的RNA速度方法通常假设恒定的转录速率,并以基因特异性时间独立处理基因,这可能会引入偏见并偏离生物学现实。在这里,我们提出了InterVelo,一个新的深度学习框架,同时学习细胞伪时间和RNA速度。结果:InterVelo利用无监督的细胞时间来指导RNA速度估计,而估计的RNA速度反过来又细化了伪时间的方向。通过对现有方法在模拟和真实数据集上的基准测试,我们证明了它在恢复伪时间和RNA速度方面的优越性能。InterVelo在方向和大小方面都能得到更精确的速度估计,在不同的情况下具有出色的鲁棒性。此外,它还成功地识别了驱动基因,并实现了可靠的基因活性富集分析。InterVelo灵活的体系结构还允许多组数据的集成,增强其对复杂生物系统的适用性。可用性:InterVelo是由python实现的,其代码可在GitHub https://github.com/yurouwang-rosie/InterVelo上获得,并已存档为DOI https://doi.org/10.5281/zenodo.16158798,以便再现性。补充信息:补充数据可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
InterVelo: A Mutually Enhancing Model for Estimating Pseudotime and RNA Velocity in Multi-Omic Single-Cell Data.

Motivation: RNA velocity has become a powerful tool for uncovering transcriptional dynamics in snapshot single-cell data. However, current RNA velocity approaches often assume constant transcriptional rates and treat genes independently with gene-specific times, which may introduce biases and deviate from biological realities. Here, we present InterVelo, a novel deep learning framework that simultaneously learns cellular pseudotime and RNA velocity.

Results: InterVelo leverages an unsupervised cellular time to guide RNA velocity estimation, while the estimated RNA velocity in turn refines the direction of pseudotime. By benchmarking InterVelo against existing methods on both simulated and real datasets, we demonstrate its superior performance in recovering pseudotime and RNA velocity. InterVelo yields more precise velocity estimations in terms of both direction and magnitude, with outstanding robustness across diverse scenarios. Furthermore, it successfully identifies driver genes and enables reliable gene activity enrichment analysis. The flexible architecture of InterVelo also allows for the integration of multi-omic data, enhancing its applicability to complex biological systems.

Availability: InterVelo is implemented by python, and the code is available on GitHub https://github.com/yurouwang-rosie/InterVelo and has been archived with a DOI https://doi.org/10.5281/zenodo.16158798 for reproducibility.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信