镍介导的高自旋铁(III)促进电催化NO转化为肟。

IF 16.9
Runan Xiang, Jiawei Kang, Lu Zhang, Xupeng Qin, Peisen Liao, Sijia Zhan, Qinghua Liu, Zheng Liu, Song Gao, Guangqin Li
{"title":"镍介导的高自旋铁(III)促进电催化NO转化为肟。","authors":"Runan Xiang, Jiawei Kang, Lu Zhang, Xupeng Qin, Peisen Liao, Sijia Zhan, Qinghua Liu, Zheng Liu, Song Gao, Guangqin Li","doi":"10.1002/anie.202515660","DOIUrl":null,"url":null,"abstract":"<p><p>Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid. The optimized pFeNiPc catalyst achieved a Faradaic efficiency of 84.3% and a long-term stability for glyoxylate oxime electrosynthesis. Moreover, the oxime could be directly cyclized to synthesize a gram-level agrochemical isoxazoline molecule. The enriched amounts of high-spin Fe(III) sites promote the accumulation of NO on the catalyst surface and further accelerate reduction, which enables the efficient adsorption-conversion of NO to oxime. This work devises an innovative strategy to selectively engineer the activation of catalytic sites by tailoring electronic configuration and presents a method to facilitate NO valorization in organonitrogen synthesis.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202515660"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni-Mediated High-Spin Iron(III) for Boosting Electrocatalytic NO to Oxime Conversion.\",\"authors\":\"Runan Xiang, Jiawei Kang, Lu Zhang, Xupeng Qin, Peisen Liao, Sijia Zhan, Qinghua Liu, Zheng Liu, Song Gao, Guangqin Li\",\"doi\":\"10.1002/anie.202515660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid. The optimized pFeNiPc catalyst achieved a Faradaic efficiency of 84.3% and a long-term stability for glyoxylate oxime electrosynthesis. Moreover, the oxime could be directly cyclized to synthesize a gram-level agrochemical isoxazoline molecule. The enriched amounts of high-spin Fe(III) sites promote the accumulation of NO on the catalyst surface and further accelerate reduction, which enables the efficient adsorption-conversion of NO to oxime. This work devises an innovative strategy to selectively engineer the activation of catalytic sites by tailoring electronic configuration and presents a method to facilitate NO valorization in organonitrogen synthesis.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202515660\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202515660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧肟作为合成化学中不可缺少的中间体,由于它们独特的C = N─OH结构,赋予了高度通用的反应活性。电化学法合成肟具有潜在的优势,伴随着工业化的升级。本文提出了一种新的策略,通过引入镍(Ni)作为中介,在酞菁结构中获得高自旋铁(Fe)(III),用于电催化一氧化氮(NO)与酮酸偶联合成乙醛酸肟。优化后的pFeNiPc催化剂具有84.3%的法拉第效率和长期稳定的乙醛酸肟电合成性能。此外,肟可以直接环化合成克级农用异恶唑啉分子。高自旋Fe(III)位点的富集量促进了NO在催化剂表面的积累,进一步加速了还原,使NO高效吸附转化为肟。这项工作设计了一种创新的策略,通过定制电子配置来选择性地设计催化位点的激活,并提出了一种在有机氮合成中促进NO增值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ni-Mediated High-Spin Iron(III) for Boosting Electrocatalytic NO to Oxime Conversion.

Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid. The optimized pFeNiPc catalyst achieved a Faradaic efficiency of 84.3% and a long-term stability for glyoxylate oxime electrosynthesis. Moreover, the oxime could be directly cyclized to synthesize a gram-level agrochemical isoxazoline molecule. The enriched amounts of high-spin Fe(III) sites promote the accumulation of NO on the catalyst surface and further accelerate reduction, which enables the efficient adsorption-conversion of NO to oxime. This work devises an innovative strategy to selectively engineer the activation of catalytic sites by tailoring electronic configuration and presents a method to facilitate NO valorization in organonitrogen synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信