单个维管细胞的表观基因组景观反映了发育起源和疾病风险位点。

IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chad S Weldy, Soumya Kundu, João Monteiro, Wenduo Gu, Albert J Pedroza, Alex R Dalal, Matthew D Worssam, Daniel Li, Brian Palmisano, Quanyi Zhao, Disha Sharma, Trieu Nguyen, Ramendra Kundu, Michael P Fischbein, Jesse Engreitz, Anshul B Kundaje, Paul P Cheng, Thomas Quertermous
{"title":"单个维管细胞的表观基因组景观反映了发育起源和疾病风险位点。","authors":"Chad S Weldy, Soumya Kundu, João Monteiro, Wenduo Gu, Albert J Pedroza, Alex R Dalal, Matthew D Worssam, Daniel Li, Brian Palmisano, Quanyi Zhao, Disha Sharma, Trieu Nguyen, Ramendra Kundu, Michael P Fischbein, Jesse Engreitz, Anshul B Kundaje, Paul P Cheng, Thomas Quertermous","doi":"10.1038/s44320-025-00140-2","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific. We identified epigenetic markers of embryonic origin including developmental transcription factors such as Tbx20, Hand2, Gata4, and Hoxb family members and discovered transcription factor motif accessibility to be vascular site-specific for smooth muscle, fibroblasts, and endothelial cells. We further integrated genome-wide association data for aortic dimension, and using a deep learning model to predict variant effect on chromatin accessibility, ChromBPNet, we predicted variant effects across cell type and vascular site of origin, revealing genomic regions enriched for specific TF motif footprints-including MEF2A, SMAD3, and HAND2. This work supports a paradigm that cell type and vascular site-specific enhancers govern complex genetic drivers of disease risk.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenomic landscape of single vascular cells reflects developmental origin and disease risk loci.\",\"authors\":\"Chad S Weldy, Soumya Kundu, João Monteiro, Wenduo Gu, Albert J Pedroza, Alex R Dalal, Matthew D Worssam, Daniel Li, Brian Palmisano, Quanyi Zhao, Disha Sharma, Trieu Nguyen, Ramendra Kundu, Michael P Fischbein, Jesse Engreitz, Anshul B Kundaje, Paul P Cheng, Thomas Quertermous\",\"doi\":\"10.1038/s44320-025-00140-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific. We identified epigenetic markers of embryonic origin including developmental transcription factors such as Tbx20, Hand2, Gata4, and Hoxb family members and discovered transcription factor motif accessibility to be vascular site-specific for smooth muscle, fibroblasts, and endothelial cells. We further integrated genome-wide association data for aortic dimension, and using a deep learning model to predict variant effect on chromatin accessibility, ChromBPNet, we predicted variant effects across cell type and vascular site of origin, revealing genomic regions enriched for specific TF motif footprints-including MEF2A, SMAD3, and HAND2. This work supports a paradigm that cell type and vascular site-specific enhancers govern complex genetic drivers of disease risk.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-025-00140-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00140-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血管部位对动脉粥样硬化和动脉瘤有明显的易感性,但血管部位特异性疾病风险的表观基因组和转录组学基础在很大程度上是未知的。在这里,我们从三个血管部位对小鼠血管组织进行了单细胞染色质可及性(scATACseq)和基因表达谱(scRNAseq)分析。通过对表观基因组增强子和基因调控网络的研究,我们发现关键的调控增强子不仅具有细胞类型,而且具有血管位点特异性。我们确定了胚胎起源的表观遗传标记,包括发育转录因子,如Tbx20、Hand2、Gata4和Hoxb家族成员,并发现转录因子基序列可达性对平滑肌、成纤维细胞和内皮细胞具有血管特异性。我们进一步整合了主动脉尺寸的全基因组关联数据,并使用深度学习模型预测变异对染色质可及性的影响,我们预测了不同细胞类型和血管起源部位的变异影响,揭示了富含特定TF基序足迹的基因组区域,包括MEF2A、SMAD3和HAND2。这项工作支持细胞类型和血管部位特异性增强子控制疾病风险的复杂遗传驱动的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigenomic landscape of single vascular cells reflects developmental origin and disease risk loci.

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific. We identified epigenetic markers of embryonic origin including developmental transcription factors such as Tbx20, Hand2, Gata4, and Hoxb family members and discovered transcription factor motif accessibility to be vascular site-specific for smooth muscle, fibroblasts, and endothelial cells. We further integrated genome-wide association data for aortic dimension, and using a deep learning model to predict variant effect on chromatin accessibility, ChromBPNet, we predicted variant effects across cell type and vascular site of origin, revealing genomic regions enriched for specific TF motif footprints-including MEF2A, SMAD3, and HAND2. This work supports a paradigm that cell type and vascular site-specific enhancers govern complex genetic drivers of disease risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信