细颗粒物与动脉粥样硬化性心血管疾病亚型共享遗传变异相互作用的观察和实验证据

IF 5.5 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Jingyi Zhang, Shanshan Ran, Lan Chen, Miao Cai, Fei Tian, Baozhuo Ai, Samantha E Qian, Maya Tabet, Steven W Howard, Yin Yang, Hualiang Lin
{"title":"细颗粒物与动脉粥样硬化性心血管疾病亚型共享遗传变异相互作用的观察和实验证据","authors":"Jingyi Zhang, Shanshan Ran, Lan Chen, Miao Cai, Fei Tian, Baozhuo Ai, Samantha E Qian, Maya Tabet, Steven W Howard, Yin Yang, Hualiang Lin","doi":"10.1161/CIRCGEN.124.004986","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.</p><p><strong>Methods: </strong>Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants. We examined the interactions between fine particulate matter (PM<sub>2.5</sub>) and genetic variants across 3 ASCVD subtypes: coronary artery disease, ischemic stroke, and peripheral artery disease. A polygenic risk score was constructed, and functional annotation identified potential genes at loci interacting with air pollution. In vivo studies explored how genome-wide interaction analysis-identified genes interacting with PM<sub>2.5</sub> might contribute to atherosclerotic plaque progression.</p><p><strong>Results: </strong>During 12.55 years of follow-up, 42 696 ASCVD events were observed. Genome-wide interaction analysis identified 12 loci shared across the ASCVD subtypes related to PM<sub>2.5</sub> exposure. Functional annotation suggested these loci and colocalized genes are involved in pathways such as cell-cell adhesion, deoxyribonucleotide biosynthesis, RNA metabolism, and calcium homeostasis. High genetic risk combined with PM<sub>2.5</sub> exposure was associated with coronary artery disease, ischemic stroke, and peripheral artery disease, with hazard ratios and 95% CIs of 1.35 (1.32-1.37), 1.53 (1.47-1.58), and 1.68 (1.62-1.75), respectively. Animal studies confirmed that adenosine kinase gene expression might interact with PM<sub>2.5</sub>, potentially influencing atherosclerotic plaque development through inflammation.</p><p><strong>Conclusions: </strong>Our study identified genome-wide loci interacting with PM<sub>2.5</sub> and linked adenosine kinase expression in response to PM<sub>2.5</sub> exposure to the formation of atherosclerotic plaques, highlighting potential pathways that connect PM<sub>2.5</sub> to ASCVD.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004986"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational and Experimental Evidence on the Interaction Between Fine Particulate Matter and Shared Genetic Variants Across Atherosclerotic Cardiovascular Disease Subtypes.\",\"authors\":\"Jingyi Zhang, Shanshan Ran, Lan Chen, Miao Cai, Fei Tian, Baozhuo Ai, Samantha E Qian, Maya Tabet, Steven W Howard, Yin Yang, Hualiang Lin\",\"doi\":\"10.1161/CIRCGEN.124.004986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.</p><p><strong>Methods: </strong>Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants. We examined the interactions between fine particulate matter (PM<sub>2.5</sub>) and genetic variants across 3 ASCVD subtypes: coronary artery disease, ischemic stroke, and peripheral artery disease. A polygenic risk score was constructed, and functional annotation identified potential genes at loci interacting with air pollution. In vivo studies explored how genome-wide interaction analysis-identified genes interacting with PM<sub>2.5</sub> might contribute to atherosclerotic plaque progression.</p><p><strong>Results: </strong>During 12.55 years of follow-up, 42 696 ASCVD events were observed. Genome-wide interaction analysis identified 12 loci shared across the ASCVD subtypes related to PM<sub>2.5</sub> exposure. Functional annotation suggested these loci and colocalized genes are involved in pathways such as cell-cell adhesion, deoxyribonucleotide biosynthesis, RNA metabolism, and calcium homeostasis. High genetic risk combined with PM<sub>2.5</sub> exposure was associated with coronary artery disease, ischemic stroke, and peripheral artery disease, with hazard ratios and 95% CIs of 1.35 (1.32-1.37), 1.53 (1.47-1.58), and 1.68 (1.62-1.75), respectively. Animal studies confirmed that adenosine kinase gene expression might interact with PM<sub>2.5</sub>, potentially influencing atherosclerotic plaque development through inflammation.</p><p><strong>Conclusions: </strong>Our study identified genome-wide loci interacting with PM<sub>2.5</sub> and linked adenosine kinase expression in response to PM<sub>2.5</sub> exposure to the formation of atherosclerotic plaques, highlighting potential pathways that connect PM<sub>2.5</sub> to ASCVD.</p>\",\"PeriodicalId\":10326,\"journal\":{\"name\":\"Circulation: Genomic and Precision Medicine\",\"volume\":\" \",\"pages\":\"e004986\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Genomic and Precision Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGEN.124.004986\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Genomic and Precision Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCGEN.124.004986","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:以往的研究表明,环境空气污染与动脉粥样硬化性心血管疾病(ASCVD)之间的关系因基因型而异。全基因组方法在基因组尺度上提供了对这种关系的更全面的理解。方法:利用来自英国生物银行(UK Biobank)约30万名参与者的数据,对10 745 802个变异进行全基因组互作分析。我们研究了细颗粒物(PM2.5)与3种ASCVD亚型(冠状动脉疾病、缺血性中风和外周动脉疾病)遗传变异之间的相互作用。构建了多基因风险评分,并对与空气污染相互作用的基因位点进行了功能标注。体内研究探讨了全基因组相互作用分析鉴定的与PM2.5相互作用的基因如何促进动脉粥样硬化斑块的进展。结果:在12.55年的随访中,共观察到42 696例ASCVD事件。全基因组相互作用分析确定了与PM2.5暴露相关的ASCVD亚型共有的12个位点。功能注释表明,这些基因座和共定位基因参与细胞-细胞粘附、脱氧核糖核苷酸生物合成、RNA代谢和钙稳态等途径。高遗传风险结合PM2.5暴露与冠状动脉疾病、缺血性中风和外周动脉疾病相关,风险比和95% ci分别为1.35(1.32-1.37)、1.53(1.47-1.58)和1.68(1.62-1.75)。动物研究证实,腺苷激酶基因表达可能与PM2.5相互作用,可能通过炎症影响动脉粥样硬化斑块的形成。结论:我们的研究确定了与PM2.5相互作用的全基因组位点,以及与PM2.5暴露于动脉粥样硬化斑块形成相关的腺苷激酶表达,突出了PM2.5与ASCVD之间的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observational and Experimental Evidence on the Interaction Between Fine Particulate Matter and Shared Genetic Variants Across Atherosclerotic Cardiovascular Disease Subtypes.

Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.

Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants. We examined the interactions between fine particulate matter (PM2.5) and genetic variants across 3 ASCVD subtypes: coronary artery disease, ischemic stroke, and peripheral artery disease. A polygenic risk score was constructed, and functional annotation identified potential genes at loci interacting with air pollution. In vivo studies explored how genome-wide interaction analysis-identified genes interacting with PM2.5 might contribute to atherosclerotic plaque progression.

Results: During 12.55 years of follow-up, 42 696 ASCVD events were observed. Genome-wide interaction analysis identified 12 loci shared across the ASCVD subtypes related to PM2.5 exposure. Functional annotation suggested these loci and colocalized genes are involved in pathways such as cell-cell adhesion, deoxyribonucleotide biosynthesis, RNA metabolism, and calcium homeostasis. High genetic risk combined with PM2.5 exposure was associated with coronary artery disease, ischemic stroke, and peripheral artery disease, with hazard ratios and 95% CIs of 1.35 (1.32-1.37), 1.53 (1.47-1.58), and 1.68 (1.62-1.75), respectively. Animal studies confirmed that adenosine kinase gene expression might interact with PM2.5, potentially influencing atherosclerotic plaque development through inflammation.

Conclusions: Our study identified genome-wide loci interacting with PM2.5 and linked adenosine kinase expression in response to PM2.5 exposure to the formation of atherosclerotic plaques, highlighting potential pathways that connect PM2.5 to ASCVD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation: Genomic and Precision Medicine
Circulation: Genomic and Precision Medicine Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
9.20
自引率
5.40%
发文量
144
期刊介绍: Circulation: Genomic and Precision Medicine is a distinguished journal dedicated to advancing the frontiers of cardiovascular genomics and precision medicine. It publishes a diverse array of original research articles that delve into the genetic and molecular underpinnings of cardiovascular diseases. The journal's scope is broad, encompassing studies from human subjects to laboratory models, and from in vitro experiments to computational simulations. Circulation: Genomic and Precision Medicine is committed to publishing studies that have direct relevance to human cardiovascular biology and disease, with the ultimate goal of improving patient care and outcomes. The journal serves as a platform for researchers to share their groundbreaking work, fostering collaboration and innovation in the field of cardiovascular genomics and precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信