控制复杂节奏:极限环切换的分层方法。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0296708
Suvam Pal, Dibakar Ghosh, Sandip Saha
{"title":"控制复杂节奏:极限环切换的分层方法。","authors":"Suvam Pal, Dibakar Ghosh, Sandip Saha","doi":"10.1063/5.0296708","DOIUrl":null,"url":null,"abstract":"<p><p>Limit cycles are self-sustained, closed trajectories in phase space representing (un)-stable, periodic behavior in nonlinear dynamical systems. They underpin diverse natural phenomena, from neuronal firing patterns to engineering oscillations. The presence of multiple concentric limit cycles reflects distinct behavioral symmetries within a system. In this work, we investigate the hierarchical dynamical transitions from one limit cycle to another, driven by oscillatory excitation while preserving other system properties. We demonstrate that controlling multirhythmicity through hierarchical, stepwise periodic modulation enables reliable switching between rhythmic states. This hierarchical control framework is crucial for applications in neuro-engineering and synthetic biology, where precise, robust modulation of complex rhythmic behaviors enhances system functionality and adaptability.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling complex rhythms: A hierarchical approach to limit cycle switching.\",\"authors\":\"Suvam Pal, Dibakar Ghosh, Sandip Saha\",\"doi\":\"10.1063/5.0296708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Limit cycles are self-sustained, closed trajectories in phase space representing (un)-stable, periodic behavior in nonlinear dynamical systems. They underpin diverse natural phenomena, from neuronal firing patterns to engineering oscillations. The presence of multiple concentric limit cycles reflects distinct behavioral symmetries within a system. In this work, we investigate the hierarchical dynamical transitions from one limit cycle to another, driven by oscillatory excitation while preserving other system properties. We demonstrate that controlling multirhythmicity through hierarchical, stepwise periodic modulation enables reliable switching between rhythmic states. This hierarchical control framework is crucial for applications in neuro-engineering and synthetic biology, where precise, robust modulation of complex rhythmic behaviors enhances system functionality and adaptability.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0296708\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0296708","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在非线性动力系统中,极限环是自持续的、封闭的相空间轨迹,表示(非)稳定的周期行为。它们是多种自然现象的基础,从神经元放电模式到工程振荡。多个同心极限环的存在反映了系统内不同的行为对称性。在这项工作中,我们研究了由振荡激励驱动的从一个极限环到另一个极限环的分层动态转换,同时保留了系统的其他性质。我们证明了通过分层、逐步周期调制来控制多节奏性,可以在节奏状态之间可靠地切换。这种层次控制框架对于神经工程和合成生物学的应用至关重要,在这些领域,复杂节律行为的精确、鲁棒调节增强了系统的功能和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling complex rhythms: A hierarchical approach to limit cycle switching.

Limit cycles are self-sustained, closed trajectories in phase space representing (un)-stable, periodic behavior in nonlinear dynamical systems. They underpin diverse natural phenomena, from neuronal firing patterns to engineering oscillations. The presence of multiple concentric limit cycles reflects distinct behavioral symmetries within a system. In this work, we investigate the hierarchical dynamical transitions from one limit cycle to another, driven by oscillatory excitation while preserving other system properties. We demonstrate that controlling multirhythmicity through hierarchical, stepwise periodic modulation enables reliable switching between rhythmic states. This hierarchical control framework is crucial for applications in neuro-engineering and synthetic biology, where precise, robust modulation of complex rhythmic behaviors enhances system functionality and adaptability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信