{"title":"止吐药fosaprepitant通过靶向FAK抑制AKT和JNK/c-Jun通路对NSCLC发挥抗肿瘤作用。","authors":"Ying Wang, Yu-Na Shao, Chen-Kang Ma, Chen-Ying Shu, Yi-Hua Zhang, Di Lu, Hui-Ling Zhang, Jian-Jie Zhu, Yuan-Yuan Zeng, Jian-Jun Li, Zhao-Wei Yan, Ze-Yi Liu","doi":"10.1038/s41401-025-01645-0","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment. Fosaprepitant (FOS), a clinical antiemetic drug, exhibited a high affinity for FAK with a K<sub>D</sub> value of 4.35 × 10⁻⁵ M. The direct interaction between FOS and FAK was confirmed by molecular docking, molecular dynamics, drug affinity responsive target stability and surface plasmon resonance analysis. We showed that FOS (15, 25 μM) dose-dependently inhibited the proliferation, migration and invasion of A549 and H1299 cells by targeting FAK. The IC<sub>50</sub> values in inhibiting the cell viability at 24 h were 73.05 and 126.1 μM, respectively. Knockdown FAK reversed the inhibitory effects of FOS on A549 cells. Using RNA sequencing and Western blotting analysis, we demonstrated that FOS treatment led to downregulation of the AKT and JNK/c-Jun signaling pathways in A549 and H1299 cells. Importantly, point mutation analyses revealed that FOS primarily targeted the Y925 phosphorylation site on FAK. In A549 cells xenograft nude mouse model, administration of FOS (20, 60 mg/kg, i.p. every 2 d for 2 weeks) dose-dependently suppressed the tumor growth. Collectively, FOS exhibits significant anti-NSCLC activity both in vitro and in vivo by binding to FAK and inhibiting its phosphorylation, thereby blocking the AKT and JNK/c-Jun signaling pathways. These results suggest FOS as a novel FAK inhibitor for NSCLC treatment.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiemetic drug fosaprepitant exerts anti-tumor effects against NSCLC by targeting FAK to inhibit AKT and JNK/c-Jun pathways.\",\"authors\":\"Ying Wang, Yu-Na Shao, Chen-Kang Ma, Chen-Ying Shu, Yi-Hua Zhang, Di Lu, Hui-Ling Zhang, Jian-Jie Zhu, Yuan-Yuan Zeng, Jian-Jun Li, Zhao-Wei Yan, Ze-Yi Liu\",\"doi\":\"10.1038/s41401-025-01645-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment. Fosaprepitant (FOS), a clinical antiemetic drug, exhibited a high affinity for FAK with a K<sub>D</sub> value of 4.35 × 10⁻⁵ M. The direct interaction between FOS and FAK was confirmed by molecular docking, molecular dynamics, drug affinity responsive target stability and surface plasmon resonance analysis. We showed that FOS (15, 25 μM) dose-dependently inhibited the proliferation, migration and invasion of A549 and H1299 cells by targeting FAK. The IC<sub>50</sub> values in inhibiting the cell viability at 24 h were 73.05 and 126.1 μM, respectively. Knockdown FAK reversed the inhibitory effects of FOS on A549 cells. Using RNA sequencing and Western blotting analysis, we demonstrated that FOS treatment led to downregulation of the AKT and JNK/c-Jun signaling pathways in A549 and H1299 cells. Importantly, point mutation analyses revealed that FOS primarily targeted the Y925 phosphorylation site on FAK. In A549 cells xenograft nude mouse model, administration of FOS (20, 60 mg/kg, i.p. every 2 d for 2 weeks) dose-dependently suppressed the tumor growth. Collectively, FOS exhibits significant anti-NSCLC activity both in vitro and in vivo by binding to FAK and inhibiting its phosphorylation, thereby blocking the AKT and JNK/c-Jun signaling pathways. These results suggest FOS as a novel FAK inhibitor for NSCLC treatment.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01645-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01645-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Antiemetic drug fosaprepitant exerts anti-tumor effects against NSCLC by targeting FAK to inhibit AKT and JNK/c-Jun pathways.
Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment. Fosaprepitant (FOS), a clinical antiemetic drug, exhibited a high affinity for FAK with a KD value of 4.35 × 10⁻⁵ M. The direct interaction between FOS and FAK was confirmed by molecular docking, molecular dynamics, drug affinity responsive target stability and surface plasmon resonance analysis. We showed that FOS (15, 25 μM) dose-dependently inhibited the proliferation, migration and invasion of A549 and H1299 cells by targeting FAK. The IC50 values in inhibiting the cell viability at 24 h were 73.05 and 126.1 μM, respectively. Knockdown FAK reversed the inhibitory effects of FOS on A549 cells. Using RNA sequencing and Western blotting analysis, we demonstrated that FOS treatment led to downregulation of the AKT and JNK/c-Jun signaling pathways in A549 and H1299 cells. Importantly, point mutation analyses revealed that FOS primarily targeted the Y925 phosphorylation site on FAK. In A549 cells xenograft nude mouse model, administration of FOS (20, 60 mg/kg, i.p. every 2 d for 2 weeks) dose-dependently suppressed the tumor growth. Collectively, FOS exhibits significant anti-NSCLC activity both in vitro and in vivo by binding to FAK and inhibiting its phosphorylation, thereby blocking the AKT and JNK/c-Jun signaling pathways. These results suggest FOS as a novel FAK inhibitor for NSCLC treatment.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.