{"title":"贝叶斯量子振幅估计","authors":"Alexandra Ramôa, Luis Paulo Santos","doi":"10.22331/q-2025-09-11-1856","DOIUrl":null,"url":null,"abstract":"We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation. In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt. We further propose aBAE, an annealed variant of BAE drawing on methods from statistical inference, to enhance robustness. Our proposals are parallelizable in both quantum and classical components, offer tools for fast noise model assessment, and can leverage preexisting information. Additionally, they accommodate experimental limitations and preferred cost trade-offs. We propose a robust benchmark for amplitude estimation algorithms and use it to test BAE against other approaches, demonstrating its competitive performance in both noisy and noiseless scenarios. In both cases, it achieves lower error than any other algorithm as a function of the cost. In the presence of decoherence, it is capable of learning when other algorithms fail.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"13 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Quantum Amplitude Estimation\",\"authors\":\"Alexandra Ramôa, Luis Paulo Santos\",\"doi\":\"10.22331/q-2025-09-11-1856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation. In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt. We further propose aBAE, an annealed variant of BAE drawing on methods from statistical inference, to enhance robustness. Our proposals are parallelizable in both quantum and classical components, offer tools for fast noise model assessment, and can leverage preexisting information. Additionally, they accommodate experimental limitations and preferred cost trade-offs. We propose a robust benchmark for amplitude estimation algorithms and use it to test BAE against other approaches, demonstrating its competitive performance in both noisy and noiseless scenarios. In both cases, it achieves lower error than any other algorithm as a function of the cost. In the presence of decoherence, it is capable of learning when other algorithms fail.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-09-11-1856\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-09-11-1856","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation. In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt. We further propose aBAE, an annealed variant of BAE drawing on methods from statistical inference, to enhance robustness. Our proposals are parallelizable in both quantum and classical components, offer tools for fast noise model assessment, and can leverage preexisting information. Additionally, they accommodate experimental limitations and preferred cost trade-offs. We propose a robust benchmark for amplitude estimation algorithms and use it to test BAE against other approaches, demonstrating its competitive performance in both noisy and noiseless scenarios. In both cases, it achieves lower error than any other algorithm as a function of the cost. In the presence of decoherence, it is capable of learning when other algorithms fail.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.