高维酉运算的非局部转移

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-09-11 DOI:10.22331/q-2025-09-11-1855
Dilip Paneru, Francesco Di Colandrea, Alessio D'Errico, Ebrahim Karimi
{"title":"高维酉运算的非局部转移","authors":"Dilip Paneru, Francesco Di Colandrea, Alessio D'Errico, Ebrahim Karimi","doi":"10.22331/q-2025-09-11-1855","DOIUrl":null,"url":null,"abstract":"Highly correlated biphoton states are powerful resources in quantum optics, both for fundamental tests of the theory and practical applications. In particular, high-dimensional spatial correlation has been used in several quantum information processing and sensing tasks, for instance, in ghost imaging experiments along with several quantum key distribution protocols. Here, we introduce a technique that exploits spatial correlations, whereby one can nonlocally access the result of an arbitrary unitary operator on an arbitrary input state without the need to perform any operation themselves. The method is experimentally validated on a set of spatially periodic unitary operations in one-dimensional and two-dimensional spaces. Our findings pave the way for efficiently distributing quantum simulations and computations in future instances of quantum networks where users with limited resources can nonlocally access the results of complex unitary transformations via a centrally located quantum processor.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"14 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal transfer of high-dimensional unitary operations\",\"authors\":\"Dilip Paneru, Francesco Di Colandrea, Alessio D'Errico, Ebrahim Karimi\",\"doi\":\"10.22331/q-2025-09-11-1855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly correlated biphoton states are powerful resources in quantum optics, both for fundamental tests of the theory and practical applications. In particular, high-dimensional spatial correlation has been used in several quantum information processing and sensing tasks, for instance, in ghost imaging experiments along with several quantum key distribution protocols. Here, we introduce a technique that exploits spatial correlations, whereby one can nonlocally access the result of an arbitrary unitary operator on an arbitrary input state without the need to perform any operation themselves. The method is experimentally validated on a set of spatially periodic unitary operations in one-dimensional and two-dimensional spaces. Our findings pave the way for efficiently distributing quantum simulations and computations in future instances of quantum networks where users with limited resources can nonlocally access the results of complex unitary transformations via a centrally located quantum processor.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-09-11-1855\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-09-11-1855","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高度相关双光子态是量子光学中理论和实际应用基础测试的重要资源。特别是,高维空间相关已被用于一些量子信息处理和传感任务,例如,在幽灵成像实验中,以及一些量子密钥分发协议。在这里,我们介绍了一种利用空间相关性的技术,通过这种技术,人们可以非局部地访问任意输入状态上的任意酉算子的结果,而不需要自己执行任何操作。在一维和二维空间中的一组空间周期酉运算上对该方法进行了实验验证。我们的发现为在未来量子网络实例中有效地分配量子模拟和计算铺平了道路,在量子网络中,资源有限的用户可以通过中央定位的量子处理器非局部访问复杂的酉变换结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlocal transfer of high-dimensional unitary operations
Highly correlated biphoton states are powerful resources in quantum optics, both for fundamental tests of the theory and practical applications. In particular, high-dimensional spatial correlation has been used in several quantum information processing and sensing tasks, for instance, in ghost imaging experiments along with several quantum key distribution protocols. Here, we introduce a technique that exploits spatial correlations, whereby one can nonlocally access the result of an arbitrary unitary operator on an arbitrary input state without the need to perform any operation themselves. The method is experimentally validated on a set of spatially periodic unitary operations in one-dimensional and two-dimensional spaces. Our findings pave the way for efficiently distributing quantum simulations and computations in future instances of quantum networks where users with limited resources can nonlocally access the results of complex unitary transformations via a centrally located quantum processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信