{"title":"PAZ结构域旋转是嗜热嗜热菌中部区靶DNA识别的限速步骤。","authors":"Jinchu Liu, , , Kun Xi, , and , Lizhe Zhu*, ","doi":"10.1021/acs.jcim.5c01207","DOIUrl":null,"url":null,"abstract":"<p ><i>Thermus thermophilus</i> Argonaute (<i>Tt</i>Ago) is a DNA-guided programmable endonuclease with emerging applications in genome engineering, yet the rate-determining dynamic mechanisms governing its transition from guide-target hybridization to catalytic activation remain unresolved. Here, we employ molecular dynamics simulations and the Traveling-salesman-based Automated Path Searching (TAPS) approach to dissect the target DNA recognition in the middle region (nt 9–12) of <i>Tt</i>Ago. We designed two paths to tackle this problem: one assumed that coordination of the target DNA backbone occurs before base-pairing between the target and guide DNA; the other hypothesized a concerted transition without preferred order between backbone-coordination and base-pairing. While the first path exhibits two high energy barriers (12.45 and 14.12 kcal/mol), the second path is featured by a single rate limiting barrier (12.56 kcal/mol) and therefore more probable to occur. Crucially, the flexible PAZ domain in both scenarios dominates the three rate limiting barrier steps driving bidirectional cavity modulation through pivoting motions. These findings underscore the PAZ domain’s indispensable role in manipulating DNA recognition in the middle region, offering mechanistic insights for engineering high-efficiency Argonaute variants by targeting domain plasticity.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 18","pages":"9672–9683"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PAZ Domain Pivoting is the Rate-Limiting Step for Target DNA Recognition in the Middle Region of Thermus thermophilus Argonaute\",\"authors\":\"Jinchu Liu, , , Kun Xi, , and , Lizhe Zhu*, \",\"doi\":\"10.1021/acs.jcim.5c01207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p ><i>Thermus thermophilus</i> Argonaute (<i>Tt</i>Ago) is a DNA-guided programmable endonuclease with emerging applications in genome engineering, yet the rate-determining dynamic mechanisms governing its transition from guide-target hybridization to catalytic activation remain unresolved. Here, we employ molecular dynamics simulations and the Traveling-salesman-based Automated Path Searching (TAPS) approach to dissect the target DNA recognition in the middle region (nt 9–12) of <i>Tt</i>Ago. We designed two paths to tackle this problem: one assumed that coordination of the target DNA backbone occurs before base-pairing between the target and guide DNA; the other hypothesized a concerted transition without preferred order between backbone-coordination and base-pairing. While the first path exhibits two high energy barriers (12.45 and 14.12 kcal/mol), the second path is featured by a single rate limiting barrier (12.56 kcal/mol) and therefore more probable to occur. Crucially, the flexible PAZ domain in both scenarios dominates the three rate limiting barrier steps driving bidirectional cavity modulation through pivoting motions. These findings underscore the PAZ domain’s indispensable role in manipulating DNA recognition in the middle region, offering mechanistic insights for engineering high-efficiency Argonaute variants by targeting domain plasticity.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 18\",\"pages\":\"9672–9683\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c01207\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c01207","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
PAZ Domain Pivoting is the Rate-Limiting Step for Target DNA Recognition in the Middle Region of Thermus thermophilus Argonaute
Thermus thermophilus Argonaute (TtAgo) is a DNA-guided programmable endonuclease with emerging applications in genome engineering, yet the rate-determining dynamic mechanisms governing its transition from guide-target hybridization to catalytic activation remain unresolved. Here, we employ molecular dynamics simulations and the Traveling-salesman-based Automated Path Searching (TAPS) approach to dissect the target DNA recognition in the middle region (nt 9–12) of TtAgo. We designed two paths to tackle this problem: one assumed that coordination of the target DNA backbone occurs before base-pairing between the target and guide DNA; the other hypothesized a concerted transition without preferred order between backbone-coordination and base-pairing. While the first path exhibits two high energy barriers (12.45 and 14.12 kcal/mol), the second path is featured by a single rate limiting barrier (12.56 kcal/mol) and therefore more probable to occur. Crucially, the flexible PAZ domain in both scenarios dominates the three rate limiting barrier steps driving bidirectional cavity modulation through pivoting motions. These findings underscore the PAZ domain’s indispensable role in manipulating DNA recognition in the middle region, offering mechanistic insights for engineering high-efficiency Argonaute variants by targeting domain plasticity.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.