具有三角形铁(III)-氧簇的金属-有机骨架的自旋受挫性决定了其稳定性和反应性。

IF 16.9
Patrick Lechner, Gaurab Ganguly, Michael J Sahre, Georg Kresse, Johannes C B Dietschreit, Leticia González
{"title":"具有三角形铁(III)-氧簇的金属-有机骨架的自旋受挫性决定了其稳定性和反应性。","authors":"Patrick Lechner, Gaurab Ganguly, Michael J Sahre, Georg Kresse, Johannes C B Dietschreit, Leticia González","doi":"10.1002/anie.202514014","DOIUrl":null,"url":null,"abstract":"<p><p>Density functional theory (DFT) is the standard approach for modeling MIL-101(Fe) and related Fe-based metal-organic frameworks, typically assuming a ferromagnetic high-spin configuration. However, this widely adopted approach overlooks a key electronic feature: Spin frustration in the triangular <math> <semantics> <mrow><msub><mi>Fe</mi> <mn>3</mn></msub> <mrow><mo>(</mo></mrow> <msub><mi>μ</mi> <mn>3</mn></msub> </mrow> <annotation>${\\rm Fe}_{3}(\\mu _{3}$</annotation></semantics> </math> -O) nodes. Using flip-spin, broken-symmetry DFT, we identify the true ground state as an antiferromagnetic <math> <semantics><mrow><mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>6</mn></mrow> <annotation>$2S+1=6$</annotation></semantics> </math> state that standard DFT fails to capture. We demonstrate that neglecting spin frustration in MIL-101(Fe) leads to structural distortions, incorrect energetics, and misleading predictions of stability and reactivity. By explicitly accounting for spin frustration, we recover the correct structure and rationalize the temperature-dependent <math> <semantics><msub><mi>N</mi> <mn>2</mn></msub> <annotation>${\\rm N}_{2}$</annotation></semantics> </math> and CO binding. Spin frustration enhances <math> <semantics><msub><mi>N</mi> <mn>2</mn></msub> <annotation>${\\rm N}_{2}$</annotation></semantics> </math> fixation at room temperature, while its loss upon partial <math> <semantics><msup><mi>Fe</mi> <mi>III</mi></msup> <annotation>${\\rm Fe}^{\\mathrm {III}}$</annotation></semantics> </math> reduction suppresses this activity but promotes CO adsorption via <math><semantics><mi>π</mi> <annotation>$\\pi$</annotation></semantics> </math> -backbonding. These findings challenge current computational conventions and highlight spin frustration as a critical electronic feature in these frameworks.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202514014"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin Frustration Determines the Stability and Reactivity of Metal-Organic Frameworks with Triangular Iron(III)-Oxo Clusters.\",\"authors\":\"Patrick Lechner, Gaurab Ganguly, Michael J Sahre, Georg Kresse, Johannes C B Dietschreit, Leticia González\",\"doi\":\"10.1002/anie.202514014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Density functional theory (DFT) is the standard approach for modeling MIL-101(Fe) and related Fe-based metal-organic frameworks, typically assuming a ferromagnetic high-spin configuration. However, this widely adopted approach overlooks a key electronic feature: Spin frustration in the triangular <math> <semantics> <mrow><msub><mi>Fe</mi> <mn>3</mn></msub> <mrow><mo>(</mo></mrow> <msub><mi>μ</mi> <mn>3</mn></msub> </mrow> <annotation>${\\\\rm Fe}_{3}(\\\\mu _{3}$</annotation></semantics> </math> -O) nodes. Using flip-spin, broken-symmetry DFT, we identify the true ground state as an antiferromagnetic <math> <semantics><mrow><mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>6</mn></mrow> <annotation>$2S+1=6$</annotation></semantics> </math> state that standard DFT fails to capture. We demonstrate that neglecting spin frustration in MIL-101(Fe) leads to structural distortions, incorrect energetics, and misleading predictions of stability and reactivity. By explicitly accounting for spin frustration, we recover the correct structure and rationalize the temperature-dependent <math> <semantics><msub><mi>N</mi> <mn>2</mn></msub> <annotation>${\\\\rm N}_{2}$</annotation></semantics> </math> and CO binding. Spin frustration enhances <math> <semantics><msub><mi>N</mi> <mn>2</mn></msub> <annotation>${\\\\rm N}_{2}$</annotation></semantics> </math> fixation at room temperature, while its loss upon partial <math> <semantics><msup><mi>Fe</mi> <mi>III</mi></msup> <annotation>${\\\\rm Fe}^{\\\\mathrm {III}}$</annotation></semantics> </math> reduction suppresses this activity but promotes CO adsorption via <math><semantics><mi>π</mi> <annotation>$\\\\pi$</annotation></semantics> </math> -backbonding. These findings challenge current computational conventions and highlight spin frustration as a critical electronic feature in these frameworks.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202514014\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202514014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202514014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密度泛函理论(DFT)是模拟MIL-101(Fe)和相关铁基金属有机骨架的标准方法,通常假设铁磁高自旋构型。然而,这种被广泛采用的方法忽略了一个关键的电子特征:三角形fe3 (μ 3 ${\rm Fe}_{3}(\mu _{3}$ -O)节点的自旋受挫。利用自旋翻转、破对称DFT,我们确定了真正的基态为标准DFT无法捕获的反铁磁2s + 1 = 6 $2S+1=6$状态。我们证明,忽略MIL-101(Fe)中的自旋挫折会导致结构扭曲、不正确的能量学以及对稳定性和反应性的误导性预测。通过明确地考虑自旋受挫,我们恢复了正确的结构,并使温度依赖的n2 ${\rm N}_{2}$和CO结合合理化。自旋受挫增强了n2在室温下${\rm N}_{2}$的固定,而其在部分Fe III ${\rm Fe}^{\mathrm {III}}$还原中的损失抑制了这种活性,但通过π $\pi$ -回键促进了CO的吸附。这些发现挑战了当前的计算惯例,并突出了自旋受挫作为这些框架中的关键电子特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin Frustration Determines the Stability and Reactivity of Metal-Organic Frameworks with Triangular Iron(III)-Oxo Clusters.

Density functional theory (DFT) is the standard approach for modeling MIL-101(Fe) and related Fe-based metal-organic frameworks, typically assuming a ferromagnetic high-spin configuration. However, this widely adopted approach overlooks a key electronic feature: Spin frustration in the triangular Fe 3 ( μ 3 ${\rm Fe}_{3}(\mu _{3}$ -O) nodes. Using flip-spin, broken-symmetry DFT, we identify the true ground state as an antiferromagnetic 2 S + 1 = 6 $2S+1=6$ state that standard DFT fails to capture. We demonstrate that neglecting spin frustration in MIL-101(Fe) leads to structural distortions, incorrect energetics, and misleading predictions of stability and reactivity. By explicitly accounting for spin frustration, we recover the correct structure and rationalize the temperature-dependent N 2 ${\rm N}_{2}$ and CO binding. Spin frustration enhances N 2 ${\rm N}_{2}$ fixation at room temperature, while its loss upon partial Fe III ${\rm Fe}^{\mathrm {III}}$ reduction suppresses this activity but promotes CO adsorption via π $\pi$ -backbonding. These findings challenge current computational conventions and highlight spin frustration as a critical electronic feature in these frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信